Compare commits
2 commits
73b8fb0dd1
...
1b02d7e7f3
Author | SHA1 | Date | |
---|---|---|---|
1b02d7e7f3 | |||
8ce92917ed |
6 changed files with 449 additions and 455 deletions
|
@ -9,7 +9,7 @@
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $0$ is an ordinal, and if $\alpha$ is
|
\item $0$ is an ordinal, and if $\alpha$ is
|
||||||
an ordinal, so is $\alpha + 1$.
|
an ordinal, so is $\alpha + 1$.
|
||||||
\item If $\alpha$ is an ordinal and $x \in a$,
|
\item If $\alpha$ is an ordinal and $x \in \alpha$,
|
||||||
then $x$ is an ordinal.
|
then $x$ is an ordinal.
|
||||||
\item If $\alpha, \beta$ are ordinals
|
\item If $\alpha, \beta$ are ordinals
|
||||||
and $\alpha \subseteq \beta$,
|
and $\alpha \subseteq \beta$,
|
||||||
|
|
|
@ -54,7 +54,7 @@ An alternative way of formulating this is
|
||||||
Let $D$ be a class of triples
|
Let $D$ be a class of triples
|
||||||
such that for all $u,x$ there is exactly
|
such that for all $u,x$ there is exactly
|
||||||
one $y$ with $(u,x,y) \in D$
|
one $y$ with $(u,x,y) \in D$
|
||||||
(basicalls $(u,x) \mapsto y$ is a function).
|
(basically $(u,x) \mapsto y$ is a function).
|
||||||
|
|
||||||
Then there is a unique function $f$ on $A$
|
Then there is a unique function $f$ on $A$
|
||||||
such that for all $x \in A$,
|
such that for all $x \in A$,
|
||||||
|
|
|
@ -158,7 +158,7 @@ This $F$ is called the \vocab{rank function} for $(A, R)$.
|
||||||
\]
|
\]
|
||||||
and
|
and
|
||||||
\[
|
\[
|
||||||
\rk_R \rank(R) \coloneqq \ran(F).
|
\rank(R) \coloneqq \ran(F).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
In the special case that $R$ is a linear order on $A$,
|
In the special case that $R$ is a linear order on $A$,
|
||||||
|
|
|
@ -1,4 +1,3 @@
|
||||||
<<<<<<< HEAD
|
|
||||||
\lecture{16}{2023-12-11}{}
|
\lecture{16}{2023-12-11}{}
|
||||||
|
|
||||||
Recall \yaref{thm:fodor}.
|
Recall \yaref{thm:fodor}.
|
||||||
|
@ -238,227 +237,3 @@ then it is true at $\kappa$.
|
||||||
|
|
||||||
The proof of \yalabel{thm:silver} is quite elementary,
|
The proof of \yalabel{thm:silver} is quite elementary,
|
||||||
so we will do it now, but the statement can only be fully appreciated later.
|
so we will do it now, but the statement can only be fully appreciated later.
|
||||||
|
|
||||||
||||||| ede97ee
|
|
||||||
=======
|
|
||||||
\lecture{16}{2023-12-14}{Silver's Theorem}
|
|
||||||
|
|
||||||
We now want to prove \yaref{thm:silver}.
|
|
||||||
More generally, if $\kappa$ is a singular cardinal of uncountable cofinality
|
|
||||||
such that $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$,
|
|
||||||
then $2^{\kappa} = \kappa^+$.
|
|
||||||
|
|
||||||
\begin{remark}
|
|
||||||
The hypothesis of \yaref{thm:silver}
|
|
||||||
is consistent with $\ZFC$.
|
|
||||||
\end{remark}
|
|
||||||
|
|
||||||
We will only proof \yaref{thm:silver} in the special case that $\kappa = \aleph_{\omega_1}$.
|
|
||||||
The general proof differs only in notation.
|
|
||||||
|
|
||||||
\begin{remark}
|
|
||||||
It is important that the cofinality is uncountable.
|
|
||||||
For example it is consistent
|
|
||||||
with $\ZFC$ that
|
|
||||||
$2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$
|
|
||||||
but at the same time $2^{\aleph_{\omega}} = \aleph_{\omega + 2}$.
|
|
||||||
\end{remark}
|
|
||||||
|
|
||||||
\begin{refproof}{thm:silver}
|
|
||||||
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
|
|
||||||
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
|
|
||||||
such that $f_{\lambda}\colon \cP(\lambda) \to \lambda^+$
|
|
||||||
is bijective for each $\lambda < \kappa$.
|
|
||||||
|
|
||||||
For $X \subseteq \aleph_{\omega_1}$
|
|
||||||
define
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
f_X\colon \omega_1 &\longrightarrow & \aleph_{\omega_1} \\
|
|
||||||
\alpha &\longmapsto & f_{\aleph_\alpha}(X \cap \aleph_\alpha).
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
For $X,Y \subseteq \aleph_{\omega_1}$
|
|
||||||
it is $X \neq Y \iff f_X \neq f_Y$.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
$X \neq Y$ holds iff $X \cap \aleph_\alpha \neq Y \cap \aleph_\alpha$
|
|
||||||
for some $\alpha < \omega_1$.
|
|
||||||
But then $f_X(\alpha) \neq f_Y(\alpha)$.
|
|
||||||
\end{subproof}
|
|
||||||
|
|
||||||
For $X, Y \subseteq \aleph_{\omega_1}$
|
|
||||||
write $X \le Y$ iff
|
|
||||||
\[
|
|
||||||
\{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}
|
|
||||||
\]
|
|
||||||
is stationary.
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
For all $X,Y \subseteq \aleph_{\omega_1}$,
|
|
||||||
$X \le Y$ or $Y \le X$.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
Suppose that $X \nleq Y$ and $Y \nleq X$.
|
|
||||||
Then there are clubs $C,D \subseteq \omega_1$
|
|
||||||
such that
|
|
||||||
\[
|
|
||||||
C \cap \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\} = \emptyset
|
|
||||||
\]
|
|
||||||
and
|
|
||||||
\[
|
|
||||||
D \cap \{\alpha < \omega_1 : f_Y(\alpha) \le f_X(\alpha)\} = \emptyset.
|
|
||||||
\]
|
|
||||||
Note that $C \cap D$ is a club.
|
|
||||||
Take some $\alpha \in C \cap D$.
|
|
||||||
But then $f_X(\alpha) \le f_Y(\alpha)$
|
|
||||||
or $f_{Y}(\alpha) \le f_X(\alpha)$ $\lightning$
|
|
||||||
\end{subproof}
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
\label{thm:silver:p:c3}.
|
|
||||||
Let $X \subseteq \aleph_{\omega_1}$.
|
|
||||||
Then
|
|
||||||
\[
|
|
||||||
|\{Y \subseteq \aleph_{\omega_1} : Y \le X\}| \le \aleph_{\omega_1}.
|
|
||||||
\]
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
Write $A \coloneqq \{Y \subseteq X_{\omega_1} : Y \le X\}$.
|
|
||||||
Suppose $|A| \ge \aleph_{\omega_1 + 1}$.
|
|
||||||
For each $Y \in A$
|
|
||||||
we have that
|
|
||||||
\[
|
|
||||||
S_Y \coloneqq \{\alpha : f_Y(\alpha) \le f_X(\alpha)\}
|
|
||||||
\]
|
|
||||||
is a stationary subset of $\omega_1$.
|
|
||||||
Since by assumption $2^{\aleph_1} = \aleph_2$,
|
|
||||||
there are at most $\aleph_2$ such $S_Y$.
|
|
||||||
|
|
||||||
Suppose that for each $S \subseteq \omega_1$,
|
|
||||||
\[
|
|
||||||
|\{Y \in A : S_Y = S\}| < \aleph_{\omega_1 + 1}.
|
|
||||||
\]
|
|
||||||
Then $A$ is the union of $\le \aleph_2$ many
|
|
||||||
sets of size $< \aleph_{\omega_1 + 1}$.
|
|
||||||
Thus this is a contradiction since $\aleph_{\omega_1 + 1}$
|
|
||||||
is regular.
|
|
||||||
|
|
||||||
So there exists a stationary $S \subseteq \omega_1$
|
|
||||||
such that
|
|
||||||
\[
|
|
||||||
A_1 = \{Y \subseteq \aleph_{\omega_1} : S_Y = S\}
|
|
||||||
\]
|
|
||||||
has cardinality $\aleph_{\omega_1 + 1}$.
|
|
||||||
We have
|
|
||||||
\[f_Y(\alpha) \le f_X(\alpha) = f_{\aleph_\alpha}(X \cap \aleph_\alpha)< \aleph_{\alpha + 1}\]
|
|
||||||
for all $Y \in A_1, \alpha \in S$.
|
|
||||||
|
|
||||||
Let $\langle g_{\alpha} : \alpha \in S \rangle$
|
|
||||||
be such that $g_\alpha\colon \aleph_{\alpha} \twoheadrightarrow f_X(\alpha) + 1$
|
|
||||||
is a surjection for all $\alpha \in S$.
|
|
||||||
|
|
||||||
Then for each $Y \in A_1$ define
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\overline{f}_Y\colon S &\longrightarrow & \aleph_{\omega_1} \\
|
|
||||||
\alpha &\longmapsto & \min \{\xi : g_\alpha(\xi) = f_Y(\alpha)\}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
Let $D$ be the set of all limit ordinals $< \omega_1$.
|
|
||||||
Then $S \cap D$ is a stationary set:
|
|
||||||
If $C$ is a club, then $C \cap D$ is a club,
|
|
||||||
hence $(S \cap D) \cap C = S \cap (D \cap C) \neq \emptyset$.
|
|
||||||
|
|
||||||
Now to each $Y \in A$ we may associate
|
|
||||||
a regressive function
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
h_Y \colon S \cap D &\longrightarrow & \omega_1 \\
|
|
||||||
\alpha &\longmapsto & \min \{\beta < \alpha : \overline{f}_Y(\alpha) < \aleph_{\beta}\}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
$h_Y$ is regressive, so by \yaref{thm:fodor}
|
|
||||||
there is a stationary $T_Y \subseteq S \cap D$ on which $h_Y$ is constant.
|
|
||||||
|
|
||||||
By an argument as before,
|
|
||||||
there is a stationary $T \subseteq S \cap D$ such that
|
|
||||||
\[
|
|
||||||
|A_2| = \aleph_{\omega_1 +1},
|
|
||||||
\]
|
|
||||||
where $A_2 \coloneqq \{Y \in A_1 : T_Y = T\}$.
|
|
||||||
|
|
||||||
Let $\beta < \omega_1$ be such that for all $Y \in A_2$
|
|
||||||
and for all $\alpha \in T$, $h_Y(\alpha) = \beta$.
|
|
||||||
Then $\overline{f}_Y(\alpha) < \aleph_\beta$
|
|
||||||
for all $Y \in A_2$ and $\alpha \in T$.
|
|
||||||
|
|
||||||
There are at most $\aleph_\beta^{\aleph_1}$ many functions
|
|
||||||
$T \to \aleph_\beta$,
|
|
||||||
but
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\aleph_\beta^{\aleph_1} &\le & 2^{\aleph_\beta \cdot \aleph_1}\\
|
|
||||||
&=& \aleph_{\beta+1} \cdot \aleph_2\\
|
|
||||||
&<& \aleph_{\omega_1}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
Suppose that for each function
|
|
||||||
$\tilde{f}\colon T \to \aleph_\beta$
|
|
||||||
there are $< \aleph_{\omega_1 + 1}$ many $Y \in A_2$
|
|
||||||
with $\overline{f}_Y \cap T = \tilde{f}$.
|
|
||||||
|
|
||||||
Then $A_2$ is the union of $<\aleph_{\omega_1}$
|
|
||||||
many sets each of size $< \aleph_{\omega_1 + 1}$ $\lightning$.
|
|
||||||
Hence for some $\tilde{f}\colon T \to \aleph_\beta$,
|
|
||||||
\[
|
|
||||||
|A_3| = \aleph_{\omega_1 + 1},
|
|
||||||
\]
|
|
||||||
where $A_3 = \{Y \in A_2 : \overline{f}_Y\defon{T} = \tilde{f}\}$.
|
|
||||||
|
|
||||||
Let $Y, Y' \in A_3$ and $\alpha \in T$.
|
|
||||||
Then
|
|
||||||
\[
|
|
||||||
\overline{f}_Y(\alpha) = \overline{f}_{Y'}(\alpha),
|
|
||||||
\]
|
|
||||||
hence
|
|
||||||
\[
|
|
||||||
f_{\aleph_\alpha}(Y \cap \aleph_\alpha) = f_Y(\alpha) = f_{Y'}(\alpha) = f_{\aleph_\alpha}(Y' \cap \aleph_\alpha),
|
|
||||||
\]
|
|
||||||
i.e.~$Y \cap \aleph_\alpha = Y' \cap \aleph_\alpha$.
|
|
||||||
Since $T$ is cofinal in $\omega_1$,
|
|
||||||
it follows that $Y = Y'$.
|
|
||||||
So $|A_3| \le 1 \lightning$
|
|
||||||
\end{subproof}
|
|
||||||
|
|
||||||
Let us now define a sequence $\langle X_i : i < \aleph_{\omega_1 + 1} \rangle$
|
|
||||||
of subsets of $\aleph_{\omega_1 + 1}$ as follows:
|
|
||||||
|
|
||||||
Suppose $\langle X_j : j < i \rangle$
|
|
||||||
were already chosen.
|
|
||||||
Consider
|
|
||||||
\[
|
|
||||||
\{Y \subseteq \aleph_{\omega_1} : \exists j < i.~Y \le X_j\}
|
|
||||||
= \bigcup_{j < i} \{Y \subseteq \aleph_{\omega_1} : Y \le X_j\}.
|
|
||||||
\]
|
|
||||||
This set has cardinality $\le \aleph_{\omega_1}$
|
|
||||||
by \yaref{thm:silver:p:c3}.
|
|
||||||
Let $X_i \subseteq \aleph_{\omega_1}$
|
|
||||||
be such that $X_i \nleq X_j$ for all $j < i$.
|
|
||||||
|
|
||||||
|
|
||||||
The set
|
|
||||||
\[
|
|
||||||
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\}
|
|
||||||
= \bigcup_{i < \aleph_{\omega_1 + 1}} \{Y \subseteq \aleph_{\omega_1} : Y \le X_i\}
|
|
||||||
\]
|
|
||||||
has size $\le \aleph_{\omega_1 + 1}$
|
|
||||||
(in fact the size is exactly $\aleph_{\omega_1 + 1}$).
|
|
||||||
|
|
||||||
But
|
|
||||||
\[
|
|
||||||
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\} = \cP(\aleph_{\omega_1 + 1})
|
|
||||||
\]
|
|
||||||
because if $X \subseteq \aleph_{\omega_1 + 1}$
|
|
||||||
is such that $X \nleq X_i$ for all $i < \aleph_{\omega_1 + 1}$,
|
|
||||||
then $X_i \le X$ for all $i < \aleph_{\omega_1 + 1}$,
|
|
||||||
so such a set $X$ does not exist by \yaref{thm:silver:p:c3}.
|
|
||||||
\end{refproof}
|
|
||||||
>>>>>>> 5ee970194987e24c54bfc9c787cb219e15e71520
|
|
||||||
|
|
|
@ -1,240 +1,220 @@
|
||||||
\lecture{17}{2023-12-18}{Large cardinals}
|
\lecture{17}{2023-12-14}{Silver's Theorem}
|
||||||
|
|
||||||
|
We now want to prove \yaref{thm:silver}.
|
||||||
|
More generally, if $\kappa$ is a singular cardinal of uncountable cofinality
|
||||||
|
such that $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$,
|
||||||
|
then $2^{\kappa} = \kappa^+$.
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
\begin{itemize}
|
|
||||||
\item A cardinal $\kappa$ is called \vocab{weakly inaccessible}
|
|
||||||
iff $\kappa$ is uncountable,\footnote{dropping this we would get that $\aleph_0$ is inaccessible}
|
|
||||||
regular and $\forall \lambda < \kappa.~\lambda^+ < \kappa$.
|
|
||||||
\item A cardinal $\kappa$ is \vocab[inaccessible!strongly]{(strongly) inaccessible}
|
|
||||||
iff $\kappa$ is uncountable, regular
|
|
||||||
and $\forall \lambda < \kappa.~2^{\lambda} < \kappa$.
|
|
||||||
\end{itemize}
|
|
||||||
\end{definition}
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Since $2^{\lambda} \ge \lambda^+$,
|
The hypothesis of \yaref{thm:silver}
|
||||||
strongly inaccessible cardinals are weakly inaccessible.
|
is consistent with $\ZFC$.
|
||||||
|
|
||||||
If $\GCH$ holds, the notions coincide.
|
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\begin{theorem}
|
We will only proof \yaref{thm:silver} in the special case that $\kappa = \aleph_{\omega_1}$.
|
||||||
If $\kappa$ is inaccessible,
|
The general proof differs only in notation.
|
||||||
then $V_\kappa \models \ZFC$.\footnote{More formally $(V_{\kappa}, \in ) \models\ZFC$.}
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
Since $\kappa$ is regular, \AxRep works.
|
|
||||||
Since $2^{\lambda} < \kappa$,
|
|
||||||
\AxPow works.
|
|
||||||
The other axioms are trivial.
|
|
||||||
\todo{Exercise}
|
|
||||||
\end{proof}
|
|
||||||
\begin{corollary}
|
|
||||||
$\ZFC$ does not prove the existence of inaccessible
|
|
||||||
cardinals, unless $\ZFC$ is inconsistent.
|
|
||||||
\end{corollary}
|
|
||||||
\begin{proof}
|
|
||||||
If $\ZFC$ is consistent,
|
|
||||||
it can not prove that it is consistent.
|
|
||||||
In particular, it can not prove the existence of a model of $\ZFC$.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{definition}[Ulam]
|
\begin{remark}
|
||||||
A cardinal $\kappa > \aleph_0$ is \vocab{measurable}
|
It is important that the cofinality is uncountable.
|
||||||
iff there is an ultrafilter $U$ on $\kappa$,
|
For example it is consistent
|
||||||
such that $U$ is not principal\footnote{%
|
with $\ZFC$ that
|
||||||
i.e.~$\{\xi\} \not\in U$ for all $\xi < \kappa$%
|
$2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$
|
||||||
}
|
but at the same time $2^{\aleph_{\omega}} = \aleph_{\omega + 2}$.
|
||||||
and
|
\end{remark}
|
||||||
if $\theta < \kappa$
|
|
||||||
and $\{X_i : i < \theta\} \subseteq U$,
|
|
||||||
then $\bigcap_{i < \theta} X_i \in U$
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{goal}
|
\begin{refproof}{thm:silver}
|
||||||
We want to prove
|
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
|
||||||
that if $\kappa$ is measurable,
|
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
|
||||||
then $\kappa$ is inaccessible
|
such that $f_{\lambda}\colon \cP(\lambda) \to \lambda^+$
|
||||||
and there are $\kappa$ many
|
is bijective for each $\lambda < \kappa$.
|
||||||
inaccessible cardinals below $\kappa$
|
|
||||||
(i.e.~$\kappa$ is the $\kappa$\textsuperscript{th} inaccessible).
|
|
||||||
\end{goal}
|
|
||||||
\begin{theorem}
|
|
||||||
The following are equivalent:
|
|
||||||
\begin{enumerate}
|
|
||||||
\item $\kappa$ is a measurable cardinal.
|
|
||||||
\item There is an elementary embedding%
|
|
||||||
\footnote{Recall: $j\colon V \to M$
|
|
||||||
is an \vocab{elementary embedding} iff $j''V = \{j(x) : x \in V\} \prec M$,
|
|
||||||
i.e.~for all formulae $\phi$ and $x_1,\ldots,x_k \in V$,
|
|
||||||
$V \models\phi(x_1,\ldots,x_u) \iff M \models\phi(j(x_1),\ldots,j(x_u))$.%
|
|
||||||
}
|
|
||||||
$j\colon V \to M$ with $M$
|
|
||||||
transitive
|
|
||||||
such that $j\defon{\kappa} = \id$,
|
|
||||||
$j(\kappa) \neq \kappa$.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
2. $\implies$ 1.:
|
|
||||||
Fox $j\colon V \to M$.
|
|
||||||
Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$.
|
|
||||||
We need to show that $U$ is an ultrafilter:
|
|
||||||
\begin{itemize}
|
|
||||||
\item Let $X,Y \in U$.
|
|
||||||
Then $\kappa \in j(X) \cap j(Y)$.
|
|
||||||
We have $M \models j(X \cap Y) = j(X) \cap j(Y)$,
|
|
||||||
and thus $j(X \cap Y) = j(X) \cap j(Y)$.
|
|
||||||
It follows that $X \cap Y \in U$.
|
|
||||||
\item Let $X\in U$
|
|
||||||
and $X \subseteq Y \subseteq \kappa$.
|
|
||||||
Then $ \kappa \in j(X) \subseteq j(Y)$
|
|
||||||
by the same argument,
|
|
||||||
so $Y \in U$.
|
|
||||||
\item We have $j(\emptyset) = \emptyset$
|
|
||||||
(again $M \models j(\emptyset)$ is empty),
|
|
||||||
hence $\emptyset\not\in U$.
|
|
||||||
\item $\kappa \in U$ follows from $\kappa \in j(\kappa)$.
|
|
||||||
This is shown as follows:
|
|
||||||
\begin{claim}
|
|
||||||
For every ordinal $\alpha$,
|
|
||||||
$j(\alpha)$ is an ordinal such that $j(\alpha) \ge \alpha$.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
$\alpha \in \Ord$
|
|
||||||
can be written as
|
|
||||||
\[\forall x \in \alpha .~\forall y \in x.~y \in \alpha
|
|
||||||
\land \forall x \in \alpha .~ \forall y \in \alpha.~(x \in y \lor x = y \lor y \in x).
|
|
||||||
\]
|
|
||||||
So if $\alpha$ is an ordinal,
|
|
||||||
then $M \models \text{``$j(\alpha)$ is an ordinal''}$
|
|
||||||
in the sense above.
|
|
||||||
Therefore $j(\alpha)$ really is an ordinal.
|
|
||||||
|
|
||||||
If the claim fails,
|
For $X \subseteq \aleph_{\omega_1}$
|
||||||
we can pick the least $\alpha$ such that $j(\alpha) < \alpha$.
|
|
||||||
Then $M \models j(j(\alpha)) < j(\alpha)$,
|
|
||||||
i.e. $j(j(\alpha)) < j(\alpha)$
|
|
||||||
contradicting the minimality of $\alpha$.
|
|
||||||
\end{subproof}
|
|
||||||
|
|
||||||
Therefore as $j(\kappa) \neq \kappa$,
|
|
||||||
we have $j(\kappa) > \kappa$,
|
|
||||||
i.e.~$\kappa \in j(\kappa)$.
|
|
||||||
\item $U$ is an ultrafilter:
|
|
||||||
Let $X \subseteq \kappa$.
|
|
||||||
Then $\kappa \in j(\kappa) = j(X \cup (\kappa \setminus X)) = j(X) \cup j(\kappa \setminus X)$.
|
|
||||||
So $X \in U$ or $\kappa \setminus X \in U$.
|
|
||||||
|
|
||||||
Let $\theta < \kappa$
|
|
||||||
and $\{X_i : i < \theta\} \subseteq U$.
|
|
||||||
Then $\kappa \in j(X_i)$ for all $i < \theta$,
|
|
||||||
hence
|
|
||||||
\[
|
|
||||||
\kappa \in \bigcap_{i < \theta} j(X_i)
|
|
||||||
= j\left( \bigcap_{i < \theta} X_i \right) \in U.
|
|
||||||
\]
|
|
||||||
This holds since $j(\theta) = \theta$ (as $\theta < \kappa$),
|
|
||||||
so $j(\langle X_i : i < \theta \rangle) = \langle j(X_i) : i < \theta \rangle$.
|
|
||||||
|
|
||||||
Also if $\xi < \kappa$,
|
|
||||||
then $j(\{\xi\}) = \{\xi\}$
|
|
||||||
so $\kappa \not\in j(\{\xi\})$
|
|
||||||
and $\{\xi\} \not\in U$.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
|
|
||||||
1. $\implies$ 2.
|
|
||||||
Fix $U$.
|
|
||||||
Let ${}^{\kappa}V$ be the class of all function from $\kappa$ to $V$.
|
|
||||||
For $f,g \in {}^{\kappa}V$ define
|
|
||||||
$f \sim g :\iff \{\xi < \kappa : f(\xi) = g(\xi)\} \in U$.
|
|
||||||
This is an equivalence relation since $U$ is a filter.
|
|
||||||
Write $[f] = \{g \in {}^\kappa V : g \sim ~ f \land g \in V_\alpha \text{ for the least $\alpha$ such that there is some $h \in V_\alpha$ with $h \sim f$}\}$.%
|
|
||||||
\footnote{This is know as \vocab{Scott's Trick}.
|
|
||||||
Note that by defining equivalence classes
|
|
||||||
in the usual way (i.e.~without this trick),
|
|
||||||
one ends up with proper classes:
|
|
||||||
For $f\colon \kappa \to V$,
|
|
||||||
we can for example change $f(0)$ to be an arbitrary $V_{\alpha}$
|
|
||||||
and get another element of $[f]$.
|
|
||||||
}
|
|
||||||
For any two such equivalence classes $[f], [g]$
|
|
||||||
define
|
define
|
||||||
\[[f] \tilde{\in} [g] :\iff \{\xi < \kappa : f(\xi) \in g(\xi)\} \in U.\]
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
f_X\colon \omega_1 &\longrightarrow & \aleph_{\omega_1} \\
|
||||||
|
\alpha &\longmapsto & f_{\aleph_\alpha}(X \cap \aleph_\alpha).
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
This is independent of the choice of the representatives,
|
\begin{claim}
|
||||||
so it is well-defined.
|
For $X,Y \subseteq \aleph_{\omega_1}$
|
||||||
Now write $\cF = \{[f] : f \in {}^{\kappa}V\}$
|
it is $X \neq Y \iff f_X \neq f_Y$.
|
||||||
and look at $(\cF, \tilde{\in})$.
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
$X \neq Y$ holds iff $X \cap \aleph_\alpha \neq Y \cap \aleph_\alpha$
|
||||||
|
for some $\alpha < \omega_1$.
|
||||||
|
But then $f_X(\alpha) \neq f_Y(\alpha)$.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
The key to the construction is \yaref{thm:los} (see below).
|
For $X, Y \subseteq \aleph_{\omega_1}$
|
||||||
Given \yaref{thm:los},
|
write $X \le Y$ iff
|
||||||
we may define an elementary embedding
|
|
||||||
$\overline{j}\colon (V, \in ) \to (\cF, \tilde{\in })$
|
|
||||||
as follows:
|
|
||||||
|
|
||||||
Let $\overline{j}(x) = [c_x]$,
|
|
||||||
where $c_x \colon \kappa \to \{x\}$ is the constant function
|
|
||||||
with value $x$.
|
|
||||||
|
|
||||||
Then
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
(V, \in ) \models \phi(x_1,\ldots,x_k)&\iff&
|
|
||||||
\{\xi < \kappa: (V, \in ) \models \phi(c_{x_1}(\alpha), \ldots, c_{x_k}(\alpha))\} \in U\\
|
|
||||||
&\overset{\yaref{thm:los}}{\iff}&
|
|
||||||
(\cF, \tilde{\in }) \models \phi(\overline{j}(x_1), \ldots, \overline{j}(x_k)).
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
Let us show that $(\cF, \tilde{\in })$
|
|
||||||
is well-founded.
|
|
||||||
Otherwise there is $\langle f_n : n < \omega \rangle$
|
|
||||||
such that $f_n \in {}^\kappa V$
|
|
||||||
and $[f_{n+1}] \tilde{\in } [f_n]$ for all $n < \omega$.
|
|
||||||
|
|
||||||
Then $X_n \coloneqq \{\xi < \kappa : f_{n+1}(\xi) \in f_n(\xi)\} \in U$,
|
|
||||||
so $\bigcap X_n \in U$.
|
|
||||||
Let $\xi_0 \in \bigcap X_n$.
|
|
||||||
Then $f_0(\xi_0) \ni f_1(\xi_0) \ni f_2(\xi_0) \ni \ldots$ $\lightning$.
|
|
||||||
|
|
||||||
Note that $\tilde{\in }$ is set-like,
|
|
||||||
therefore by the \yaref{lem:mostowski}
|
|
||||||
there is some transitive $M$ with $(\cF, \tilde{\in }) \overset{\sigma}{\cong} (M, \in )$.
|
|
||||||
|
|
||||||
We can now define an elementary embedding $j\colon V \to M$
|
|
||||||
by $j \coloneqq \sigma \circ \overline{j}$.
|
|
||||||
|
|
||||||
It remains to show that $\alpha < \kappa \implies j(\alpha) = \alpha$.
|
|
||||||
This can be done by induction:
|
|
||||||
Fix $\alpha$. We already know $j(\alpha) \ge \alpha$.
|
|
||||||
Suppose $\beta \in j(\alpha)$.
|
|
||||||
Then $\beta = \sigma([f])$ for some $f$
|
|
||||||
and $\sigma([f]) \in \sigma([c_{\alpha}])$,
|
|
||||||
i.e.~$[f] \tilde{\in} [c_\alpha]$.
|
|
||||||
Thus $\{\xi < \kappa : f(\xi) \in \underbrace{c_{\alpha}(\xi)}_{\alpha}\} \in U$.
|
|
||||||
Hence there is some $\delta < \alpha$
|
|
||||||
such that
|
|
||||||
\[
|
|
||||||
X_\delta \coloneqq \{\xi < \kappa : f(\xi) = \delta\} \in U,
|
|
||||||
\]
|
|
||||||
as otherwise $\forall \delta < \alpha. ~ \kappa \setminus X_\delta \in U$,
|
|
||||||
i.e.~$\emptyset = (\bigcap_{\delta < \alpha} \kappa \setminus X_{\delta}) \cap X \in U \lightning$.
|
|
||||||
We get $[f] = [c_{\delta}]$,
|
|
||||||
so $\beta = \sigma([f]) = \delta([c_{\delta}]) = j(\delta) = \delta$,
|
|
||||||
where for the last equality we have applied the induction hypothesis.
|
|
||||||
So $j(\alpha) \le \alpha$.
|
|
||||||
|
|
||||||
% It is also easy to show $j(\kappa) > \kappa$.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{theorem}[\L o\'s]
|
|
||||||
\yalabel{\L o\'s's Theorem}{\L o\'s}{thm:los}
|
|
||||||
For all formulae $\phi$ and for all $f_1, \ldots, f_k \in {}^{\kappa} V$,
|
|
||||||
\[
|
\[
|
||||||
(\cF, \tilde{\in}) \models \phi([f_1], \ldots, [f_k])
|
\{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}
|
||||||
\iff \{\xi < \kappa : (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U.
|
|
||||||
\]
|
\]
|
||||||
\end{theorem}
|
is stationary.
|
||||||
\begin{proof}
|
|
||||||
Induction on the complexity of $\phi$.
|
\begin{claim}
|
||||||
\end{proof}
|
For all $X,Y \subseteq \aleph_{\omega_1}$,
|
||||||
|
$X \le Y$ or $Y \le X$.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Suppose that $X \nleq Y$ and $Y \nleq X$.
|
||||||
|
Then there are clubs $C,D \subseteq \omega_1$
|
||||||
|
such that
|
||||||
|
\[
|
||||||
|
C \cap \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\} = \emptyset
|
||||||
|
\]
|
||||||
|
and
|
||||||
|
\[
|
||||||
|
D \cap \{\alpha < \omega_1 : f_Y(\alpha) \le f_X(\alpha)\} = \emptyset.
|
||||||
|
\]
|
||||||
|
Note that $C \cap D$ is a club.
|
||||||
|
Take some $\alpha \in C \cap D$.
|
||||||
|
But then $f_X(\alpha) \le f_Y(\alpha)$
|
||||||
|
or $f_{Y}(\alpha) \le f_X(\alpha)$ $\lightning$
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
\label{thm:silver:p:c3}.
|
||||||
|
Let $X \subseteq \aleph_{\omega_1}$.
|
||||||
|
Then
|
||||||
|
\[
|
||||||
|
|\{Y \subseteq \aleph_{\omega_1} : Y \le X\}| \le \aleph_{\omega_1}.
|
||||||
|
\]
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Write $A \coloneqq \{Y \subseteq X_{\omega_1} : Y \le X\}$.
|
||||||
|
Suppose $|A| \ge \aleph_{\omega_1 + 1}$.
|
||||||
|
For each $Y \in A$
|
||||||
|
we have that
|
||||||
|
\[
|
||||||
|
S_Y \coloneqq \{\alpha : f_Y(\alpha) \le f_X(\alpha)\}
|
||||||
|
\]
|
||||||
|
is a stationary subset of $\omega_1$.
|
||||||
|
Since by assumption $2^{\aleph_1} = \aleph_2$,
|
||||||
|
there are at most $\aleph_2$ such $S_Y$.
|
||||||
|
|
||||||
|
Suppose that for each $S \subseteq \omega_1$,
|
||||||
|
\[
|
||||||
|
|\{Y \in A : S_Y = S\}| < \aleph_{\omega_1 + 1}.
|
||||||
|
\]
|
||||||
|
Then $A$ is the union of $\le \aleph_2$ many
|
||||||
|
sets of size $< \aleph_{\omega_1 + 1}$.
|
||||||
|
Thus this is a contradiction since $\aleph_{\omega_1 + 1}$
|
||||||
|
is regular.
|
||||||
|
|
||||||
|
So there exists a stationary $S \subseteq \omega_1$
|
||||||
|
such that
|
||||||
|
\[
|
||||||
|
A_1 = \{Y \subseteq \aleph_{\omega_1} : S_Y = S\}
|
||||||
|
\]
|
||||||
|
has cardinality $\aleph_{\omega_1 + 1}$.
|
||||||
|
We have
|
||||||
|
\[f_Y(\alpha) \le f_X(\alpha) = f_{\aleph_\alpha}(X \cap \aleph_\alpha)< \aleph_{\alpha + 1}\]
|
||||||
|
for all $Y \in A_1, \alpha \in S$.
|
||||||
|
|
||||||
|
Let $\langle g_{\alpha} : \alpha \in S \rangle$
|
||||||
|
be such that $g_\alpha\colon \aleph_{\alpha} \twoheadrightarrow f_X(\alpha) + 1$
|
||||||
|
is a surjection for all $\alpha \in S$.
|
||||||
|
|
||||||
|
Then for each $Y \in A_1$ define
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\overline{f}_Y\colon S &\longrightarrow & \aleph_{\omega_1} \\
|
||||||
|
\alpha &\longmapsto & \min \{\xi : g_\alpha(\xi) = f_Y(\alpha)\}.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
Let $D$ be the set of all limit ordinals $< \omega_1$.
|
||||||
|
Then $S \cap D$ is a stationary set:
|
||||||
|
If $C$ is a club, then $C \cap D$ is a club,
|
||||||
|
hence $(S \cap D) \cap C = S \cap (D \cap C) \neq \emptyset$.
|
||||||
|
|
||||||
|
Now to each $Y \in A$ we may associate
|
||||||
|
a regressive function
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
h_Y \colon S \cap D &\longrightarrow & \omega_1 \\
|
||||||
|
\alpha &\longmapsto & \min \{\beta < \alpha : \overline{f}_Y(\alpha) < \aleph_{\beta}\}.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
$h_Y$ is regressive, so by \yaref{thm:fodor}
|
||||||
|
there is a stationary $T_Y \subseteq S \cap D$ on which $h_Y$ is constant.
|
||||||
|
|
||||||
|
By an argument as before,
|
||||||
|
there is a stationary $T \subseteq S \cap D$ such that
|
||||||
|
\[
|
||||||
|
|A_2| = \aleph_{\omega_1 +1},
|
||||||
|
\]
|
||||||
|
where $A_2 \coloneqq \{Y \in A_1 : T_Y = T\}$.
|
||||||
|
|
||||||
|
Let $\beta < \omega_1$ be such that for all $Y \in A_2$
|
||||||
|
and for all $\alpha \in T$, $h_Y(\alpha) = \beta$.
|
||||||
|
Then $\overline{f}_Y(\alpha) < \aleph_\beta$
|
||||||
|
for all $Y \in A_2$ and $\alpha \in T$.
|
||||||
|
|
||||||
|
There are at most $\aleph_\beta^{\aleph_1}$ many functions
|
||||||
|
$T \to \aleph_\beta$,
|
||||||
|
but
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\aleph_\beta^{\aleph_1} &\le & 2^{\aleph_\beta \cdot \aleph_1}\\
|
||||||
|
&=& \aleph_{\beta+1} \cdot \aleph_2\\
|
||||||
|
&<& \aleph_{\omega_1}.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
Suppose that for each function
|
||||||
|
$\tilde{f}\colon T \to \aleph_\beta$
|
||||||
|
there are $< \aleph_{\omega_1 + 1}$ many $Y \in A_2$
|
||||||
|
with $\overline{f}_Y \cap T = \tilde{f}$.
|
||||||
|
|
||||||
|
Then $A_2$ is the union of $<\aleph_{\omega_1}$
|
||||||
|
many sets each of size $< \aleph_{\omega_1 + 1}$ $\lightning$.
|
||||||
|
Hence for some $\tilde{f}\colon T \to \aleph_\beta$,
|
||||||
|
\[
|
||||||
|
|A_3| = \aleph_{\omega_1 + 1},
|
||||||
|
\]
|
||||||
|
where $A_3 = \{Y \in A_2 : \overline{f}_Y\defon{T} = \tilde{f}\}$.
|
||||||
|
|
||||||
|
Let $Y, Y' \in A_3$ and $\alpha \in T$.
|
||||||
|
Then
|
||||||
|
\[
|
||||||
|
\overline{f}_Y(\alpha) = \overline{f}_{Y'}(\alpha),
|
||||||
|
\]
|
||||||
|
hence
|
||||||
|
\[
|
||||||
|
f_{\aleph_\alpha}(Y \cap \aleph_\alpha) = f_Y(\alpha) = f_{Y'}(\alpha) = f_{\aleph_\alpha}(Y' \cap \aleph_\alpha),
|
||||||
|
\]
|
||||||
|
i.e.~$Y \cap \aleph_\alpha = Y' \cap \aleph_\alpha$.
|
||||||
|
Since $T$ is cofinal in $\omega_1$,
|
||||||
|
it follows that $Y = Y'$.
|
||||||
|
So $|A_3| \le 1 \lightning$
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
Let us now define a sequence $\langle X_i : i < \aleph_{\omega_1 + 1} \rangle$
|
||||||
|
of subsets of $\aleph_{\omega_1 + 1}$ as follows:
|
||||||
|
|
||||||
|
Suppose $\langle X_j : j < i \rangle$
|
||||||
|
were already chosen.
|
||||||
|
Consider
|
||||||
|
\[
|
||||||
|
\{Y \subseteq \aleph_{\omega_1} : \exists j < i.~Y \le X_j\}
|
||||||
|
= \bigcup_{j < i} \{Y \subseteq \aleph_{\omega_1} : Y \le X_j\}.
|
||||||
|
\]
|
||||||
|
This set has cardinality $\le \aleph_{\omega_1}$
|
||||||
|
by \yaref{thm:silver:p:c3}.
|
||||||
|
Let $X_i \subseteq \aleph_{\omega_1}$
|
||||||
|
be such that $X_i \nleq X_j$ for all $j < i$.
|
||||||
|
|
||||||
|
|
||||||
|
The set
|
||||||
|
\[
|
||||||
|
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\}
|
||||||
|
= \bigcup_{i < \aleph_{\omega_1 + 1}} \{Y \subseteq \aleph_{\omega_1} : Y \le X_i\}
|
||||||
|
\]
|
||||||
|
has size $\le \aleph_{\omega_1 + 1}$
|
||||||
|
(in fact the size is exactly $\aleph_{\omega_1 + 1}$).
|
||||||
|
|
||||||
|
But
|
||||||
|
\[
|
||||||
|
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\} = \cP(\aleph_{\omega_1 + 1})
|
||||||
|
\]
|
||||||
|
because if $X \subseteq \aleph_{\omega_1 + 1}$
|
||||||
|
is such that $X \nleq X_i$ for all $i < \aleph_{\omega_1 + 1}$,
|
||||||
|
then $X_i \le X$ for all $i < \aleph_{\omega_1 + 1}$,
|
||||||
|
so such a set $X$ does not exist by \yaref{thm:silver:p:c3}.
|
||||||
|
\end{refproof}
|
||||||
|
|
239
inputs/lecture_18.tex
Normal file
239
inputs/lecture_18.tex
Normal file
|
@ -0,0 +1,239 @@
|
||||||
|
\lecture{18}{2023-12-18}{Large cardinals}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
\begin{itemize}
|
||||||
|
\item A cardinal $\kappa$ is called \vocab{weakly inaccessible}
|
||||||
|
iff $\kappa$ is uncountable,\footnote{dropping this we would get that $\aleph_0$ is inaccessible}
|
||||||
|
regular and $\forall \lambda < \kappa.~\lambda^+ < \kappa$.
|
||||||
|
\item A cardinal $\kappa$ is \vocab[inaccessible!strongly]{(strongly) inaccessible}
|
||||||
|
iff $\kappa$ is uncountable, regular
|
||||||
|
and $\forall \lambda < \kappa.~2^{\lambda} < \kappa$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{definition}
|
||||||
|
\begin{remark}
|
||||||
|
Since $2^{\lambda} \ge \lambda^+$,
|
||||||
|
strongly inaccessible cardinals are weakly inaccessible.
|
||||||
|
|
||||||
|
If $\GCH$ holds, the notions coincide.
|
||||||
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
If $\kappa$ is inaccessible,
|
||||||
|
then $V_\kappa \models \ZFC$.\footnote{More formally $(V_{\kappa}, \in ) \models\ZFC$.}
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
Since $\kappa$ is regular, \AxRep works.
|
||||||
|
Since $2^{\lambda} < \kappa$,
|
||||||
|
\AxPow works.
|
||||||
|
The other axioms are trivial.
|
||||||
|
\todo{Exercise}
|
||||||
|
\end{proof}
|
||||||
|
\begin{corollary}
|
||||||
|
$\ZFC$ does not prove the existence of inaccessible
|
||||||
|
cardinals, unless $\ZFC$ is inconsistent.
|
||||||
|
\end{corollary}
|
||||||
|
\begin{proof}
|
||||||
|
If $\ZFC$ is consistent,
|
||||||
|
it can not prove that it is consistent.
|
||||||
|
In particular, it can not prove the existence of a model of $\ZFC$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{definition}[Ulam]
|
||||||
|
A cardinal $\kappa > \aleph_0$ is \vocab{measurable}
|
||||||
|
iff there is an ultrafilter $U$ on $\kappa$,
|
||||||
|
such that $U$ is not principal\footnote{%
|
||||||
|
i.e.~$\{\xi\} \not\in U$ for all $\xi < \kappa$%
|
||||||
|
}
|
||||||
|
and
|
||||||
|
if $\theta < \kappa$
|
||||||
|
and $\{X_i : i < \theta\} \subseteq U$,
|
||||||
|
then $\bigcap_{i < \theta} X_i \in U$
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{goal}
|
||||||
|
We want to prove
|
||||||
|
that if $\kappa$ is measurable,
|
||||||
|
then $\kappa$ is inaccessible
|
||||||
|
and there are $\kappa$ many
|
||||||
|
inaccessible cardinals below $\kappa$
|
||||||
|
(i.e.~$\kappa$ is the $\kappa$\textsuperscript{th} inaccessible).
|
||||||
|
\end{goal}
|
||||||
|
\begin{theorem}
|
||||||
|
The following are equivalent:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $\kappa$ is a measurable cardinal.
|
||||||
|
\item There is an elementary embedding%
|
||||||
|
\footnote{Recall: $j\colon V \to M$
|
||||||
|
is an \vocab{elementary embedding} iff $j''V = \{j(x) : x \in V\} \prec M$,
|
||||||
|
i.e.~for all formulae $\phi$ and $x_1,\ldots,x_k \in V$,
|
||||||
|
$V \models\phi(x_1,\ldots,x_u) \iff M \models\phi(j(x_1),\ldots,j(x_u))$.%
|
||||||
|
}
|
||||||
|
$j\colon V \to M$ with $M$
|
||||||
|
transitive
|
||||||
|
such that $j\defon{\kappa} = \id$,
|
||||||
|
$j(\kappa) \neq \kappa$.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
2. $\implies$ 1.:
|
||||||
|
Fox $j\colon V \to M$.
|
||||||
|
Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$.
|
||||||
|
We need to show that $U$ is an ultrafilter:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Let $X,Y \in U$.
|
||||||
|
Then $\kappa \in j(X) \cap j(Y)$.
|
||||||
|
We have $M \models j(X \cap Y) = j(X) \cap j(Y)$,
|
||||||
|
and thus $j(X \cap Y) = j(X) \cap j(Y)$.
|
||||||
|
It follows that $X \cap Y \in U$.
|
||||||
|
\item Let $X\in U$
|
||||||
|
and $X \subseteq Y \subseteq \kappa$.
|
||||||
|
Then $ \kappa \in j(X) \subseteq j(Y)$
|
||||||
|
by the same argument,
|
||||||
|
so $Y \in U$.
|
||||||
|
\item We have $j(\emptyset) = \emptyset$
|
||||||
|
(again $M \models j(\emptyset)$ is empty),
|
||||||
|
hence $\emptyset\not\in U$.
|
||||||
|
\item $\kappa \in U$ follows from $\kappa \in j(\kappa)$.
|
||||||
|
This is shown as follows:
|
||||||
|
\begin{claim}
|
||||||
|
For every ordinal $\alpha$,
|
||||||
|
$j(\alpha)$ is an ordinal such that $j(\alpha) \ge \alpha$.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
$\alpha \in \Ord$
|
||||||
|
can be written as
|
||||||
|
\[\forall x \in \alpha .~\forall y \in x.~y \in \alpha
|
||||||
|
\land \forall x \in \alpha .~ \forall y \in \alpha.~(x \in y \lor x = y \lor y \in x).
|
||||||
|
\]
|
||||||
|
So if $\alpha$ is an ordinal,
|
||||||
|
then $M \models \text{``$j(\alpha)$ is an ordinal''}$
|
||||||
|
in the sense above.
|
||||||
|
Therefore $j(\alpha)$ really is an ordinal.
|
||||||
|
|
||||||
|
If the claim fails,
|
||||||
|
we can pick the least $\alpha$ such that $j(\alpha) < \alpha$.
|
||||||
|
Then $M \models j(j(\alpha)) < j(\alpha)$,
|
||||||
|
i.e. $j(j(\alpha)) < j(\alpha)$
|
||||||
|
contradicting the minimality of $\alpha$.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
Therefore as $j(\kappa) \neq \kappa$,
|
||||||
|
we have $j(\kappa) > \kappa$,
|
||||||
|
i.e.~$\kappa \in j(\kappa)$.
|
||||||
|
\item $U$ is an ultrafilter:
|
||||||
|
Let $X \subseteq \kappa$.
|
||||||
|
Then $\kappa \in j(\kappa) = j(X \cup (\kappa \setminus X)) = j(X) \cup j(\kappa \setminus X)$.
|
||||||
|
So $X \in U$ or $\kappa \setminus X \in U$.
|
||||||
|
|
||||||
|
Let $\theta < \kappa$
|
||||||
|
and $\{X_i : i < \theta\} \subseteq U$.
|
||||||
|
Then $\kappa \in j(X_i)$ for all $i < \theta$,
|
||||||
|
hence
|
||||||
|
\[
|
||||||
|
\kappa \in \bigcap_{i < \theta} j(X_i)
|
||||||
|
= j\left( \bigcap_{i < \theta} X_i \right) \in U.
|
||||||
|
\]
|
||||||
|
This holds since $j(\theta) = \theta$ (as $\theta < \kappa$),
|
||||||
|
so $j(\langle X_i : i < \theta \rangle) = \langle j(X_i) : i < \theta \rangle$.
|
||||||
|
|
||||||
|
Also if $\xi < \kappa$,
|
||||||
|
then $j(\{\xi\}) = \{\xi\}$
|
||||||
|
so $\kappa \not\in j(\{\xi\})$
|
||||||
|
and $\{\xi\} \not\in U$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
1. $\implies$ 2.
|
||||||
|
Fix $U$.
|
||||||
|
Let ${}^{\kappa}V$ be the class of all function from $\kappa$ to $V$.
|
||||||
|
For $f,g \in {}^{\kappa}V$ define
|
||||||
|
$f \sim g :\iff \{\xi < \kappa : f(\xi) = g(\xi)\} \in U$.
|
||||||
|
This is an equivalence relation since $U$ is a filter.
|
||||||
|
Write $[f] = \{g \in {}^\kappa V : g \sim ~ f \land g \in V_\alpha \text{ for the least $\alpha$ such that there is some $h \in V_\alpha$ with $h \sim f$}\}$.%
|
||||||
|
\footnote{This is know as \vocab{Scott's Trick}.
|
||||||
|
Note that by defining equivalence classes
|
||||||
|
in the usual way (i.e.~without this trick),
|
||||||
|
one ends up with proper classes:
|
||||||
|
For $f\colon \kappa \to V$,
|
||||||
|
we can for example change $f(0)$ to be an arbitrary $V_{\alpha}$
|
||||||
|
and get another element of $[f]$.
|
||||||
|
}
|
||||||
|
For any two such equivalence classes $[f], [g]$
|
||||||
|
define
|
||||||
|
\[[f] \tilde{\in} [g] :\iff \{\xi < \kappa : f(\xi) \in g(\xi)\} \in U.\]
|
||||||
|
|
||||||
|
This is independent of the choice of the representatives,
|
||||||
|
so it is well-defined.
|
||||||
|
Now write $\cF = \{[f] : f \in {}^{\kappa}V\}$
|
||||||
|
and look at $(\cF, \tilde{\in})$.
|
||||||
|
|
||||||
|
The key to the construction is \yaref{thm:los} (see below).
|
||||||
|
Given \yaref{thm:los},
|
||||||
|
we may define an elementary embedding
|
||||||
|
$\overline{j}\colon (V, \in ) \to (\cF, \tilde{\in })$
|
||||||
|
as follows:
|
||||||
|
|
||||||
|
Let $\overline{j}(x) = [c_x]$,
|
||||||
|
where $c_x \colon \kappa \to \{x\}$ is the constant function
|
||||||
|
with value $x$.
|
||||||
|
|
||||||
|
Then
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
(V, \in ) \models \phi(x_1,\ldots,x_k)&\iff&
|
||||||
|
\{\xi < \kappa: (V, \in ) \models \phi(c_{x_1}(\alpha), \ldots, c_{x_k}(\alpha))\} \in U\\
|
||||||
|
&\overset{\yaref{thm:los}}{\iff}&
|
||||||
|
(\cF, \tilde{\in }) \models \phi(\overline{j}(x_1), \ldots, \overline{j}(x_k)).
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
Let us show that $(\cF, \tilde{\in })$
|
||||||
|
is well-founded.
|
||||||
|
Otherwise there is $\langle f_n : n < \omega \rangle$
|
||||||
|
such that $f_n \in {}^\kappa V$
|
||||||
|
and $[f_{n+1}] \tilde{\in } [f_n]$ for all $n < \omega$.
|
||||||
|
|
||||||
|
Then $X_n \coloneqq \{\xi < \kappa : f_{n+1}(\xi) \in f_n(\xi)\} \in U$,
|
||||||
|
so $\bigcap X_n \in U$.
|
||||||
|
Let $\xi_0 \in \bigcap X_n$.
|
||||||
|
Then $f_0(\xi_0) \ni f_1(\xi_0) \ni f_2(\xi_0) \ni \ldots$ $\lightning$.
|
||||||
|
|
||||||
|
Note that $\tilde{\in }$ is set-like,
|
||||||
|
therefore by the \yaref{lem:mostowski}
|
||||||
|
there is some transitive $M$ with $(\cF, \tilde{\in }) \overset{\sigma}{\cong} (M, \in )$.
|
||||||
|
|
||||||
|
We can now define an elementary embedding $j\colon V \to M$
|
||||||
|
by $j \coloneqq \sigma \circ \overline{j}$.
|
||||||
|
|
||||||
|
It remains to show that $\alpha < \kappa \implies j(\alpha) = \alpha$.
|
||||||
|
This can be done by induction:
|
||||||
|
Fix $\alpha$. We already know $j(\alpha) \ge \alpha$.
|
||||||
|
Suppose $\beta \in j(\alpha)$.
|
||||||
|
Then $\beta = \sigma([f])$ for some $f$
|
||||||
|
and $\sigma([f]) \in \sigma([c_{\alpha}])$,
|
||||||
|
i.e.~$[f] \tilde{\in} [c_\alpha]$.
|
||||||
|
Thus $\{\xi < \kappa : f(\xi) \in \underbrace{c_{\alpha}(\xi)}_{\alpha}\} \in U$.
|
||||||
|
Hence there is some $\delta < \alpha$
|
||||||
|
such that
|
||||||
|
\[
|
||||||
|
X_\delta \coloneqq \{\xi < \kappa : f(\xi) = \delta\} \in U,
|
||||||
|
\]
|
||||||
|
as otherwise $\forall \delta < \alpha. ~ \kappa \setminus X_\delta \in U$,
|
||||||
|
i.e.~$\emptyset = (\bigcap_{\delta < \alpha} \kappa \setminus X_{\delta}) \cap X \in U \lightning$.
|
||||||
|
We get $[f] = [c_{\delta}]$,
|
||||||
|
so $\beta = \sigma([f]) = \delta([c_{\delta}]) = j(\delta) = \delta$,
|
||||||
|
where for the last equality we have applied the induction hypothesis.
|
||||||
|
So $j(\alpha) \le \alpha$.
|
||||||
|
|
||||||
|
% It is also easy to show $j(\kappa) > \kappa$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{theorem}[\L o\'s]
|
||||||
|
\yalabel{\L o\'s's Theorem}{\L o\'s}{thm:los}
|
||||||
|
For all formulae $\phi$ and for all $f_1, \ldots, f_k \in {}^{\kappa} V$,
|
||||||
|
\[
|
||||||
|
(\cF, \tilde{\in}) \models \phi([f_1], \ldots, [f_k])
|
||||||
|
\iff \{\xi < \kappa : (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U.
|
||||||
|
\]
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
Induction on the complexity of $\phi$.
|
||||||
|
\end{proof}
|
Loading…
Reference in a new issue