small changes
This commit is contained in:
parent
73b8fb0dd1
commit
8ce92917ed
4 changed files with 3 additions and 3 deletions
|
@ -9,7 +9,7 @@
|
|||
\begin{enumerate}[(a)]
|
||||
\item $0$ is an ordinal, and if $\alpha$ is
|
||||
an ordinal, so is $\alpha + 1$.
|
||||
\item If $\alpha$ is an ordinal and $x \in a$,
|
||||
\item If $\alpha$ is an ordinal and $x \in \alpha$,
|
||||
then $x$ is an ordinal.
|
||||
\item If $\alpha, \beta$ are ordinals
|
||||
and $\alpha \subseteq \beta$,
|
||||
|
|
|
@ -54,7 +54,7 @@ An alternative way of formulating this is
|
|||
Let $D$ be a class of triples
|
||||
such that for all $u,x$ there is exactly
|
||||
one $y$ with $(u,x,y) \in D$
|
||||
(basicalls $(u,x) \mapsto y$ is a function).
|
||||
(basically $(u,x) \mapsto y$ is a function).
|
||||
|
||||
Then there is a unique function $f$ on $A$
|
||||
such that for all $x \in A$,
|
||||
|
|
|
@ -158,7 +158,7 @@ This $F$ is called the \vocab{rank function} for $(A, R)$.
|
|||
\]
|
||||
and
|
||||
\[
|
||||
\rk_R \rank(R) \coloneqq \ran(F).
|
||||
\rank(R) \coloneqq \ran(F).
|
||||
\]
|
||||
|
||||
In the special case that $R$ is a linear order on $A$,
|
||||
|
|
Loading…
Reference in a new issue