Compare commits
No commits in common. "2b1296255bc6faf04d85a038b92dd39acb4bd14b" and "bc24bdab446f7fdb7917a98af6bae5acfd52055d" have entirely different histories.
2b1296255b
...
bc24bdab44
4 changed files with 4 additions and 243 deletions
|
@ -153,14 +153,14 @@ Relevant concepts to prove this theorem:
|
||||||
\[
|
\[
|
||||||
\sup(A \cap \beta) \in A.
|
\sup(A \cap \beta) \in A.
|
||||||
\]
|
\]
|
||||||
\item $A$ is \vocab{club} (\emph{cl}osed \emph{un}bounded)
|
\item $A$ is \vocab{club} (closed unbounded)
|
||||||
iff it is closed and unbounded.
|
iff it is closed and unbounded.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
The interesting case is that $\alpha$ is a regular uncountable cardinal.
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
$A \subseteq \alpha$ being unbounded
|
$A \subseteq \alpha$ being unbounded
|
||||||
is equivalent to $f\colon \beta\to \alpha$ being cofinal,
|
is equivalent to $f\colon \beta\to \alpha$ being cofinal,
|
||||||
where
|
where
|
||||||
$(\beta, \in ) \overset{f}{\cong} (A, \in )$.
|
$(\beta, \in ) \overset{f}{\cong} (A, \in )$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
|
||||||
|
|
|
@ -1,236 +0,0 @@
|
||||||
\lecture{14}{2023-12-04}{}
|
|
||||||
\begin{abuse}
|
|
||||||
Sometimes we say club
|
|
||||||
instead of club in $\kappa$.
|
|
||||||
\end{abuse}
|
|
||||||
\begin{example}
|
|
||||||
Let $\kappa$ be a regular uncountable cardinal.
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item $\kappa$ is a club in $\kappa$.
|
|
||||||
\item $\{\xi + 1 : \xi < \kappa\}$ is unbounded in $\kappa$,
|
|
||||||
but not closed.
|
|
||||||
\item For each $\alpha < \kappa$,
|
|
||||||
the set $\alpha + 1 = \{\xi : \xi \le \alpha\}$
|
|
||||||
is closed but not unbounded in $\kappa$.
|
|
||||||
\item $\{\xi < \kappa : \xi \text{ is a limit ordinal}\} $
|
|
||||||
is club in $\kappa$.
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
\begin{lemma}
|
|
||||||
\label{lem:clubintersection}
|
|
||||||
Let $\kappa$ be regular and uncountable.
|
|
||||||
Let $\alpha < \kappa$
|
|
||||||
and let $\langle C_{\beta} : \beta < \alpha \rangle$
|
|
||||||
be a sequence of subsets of $\kappa$ which are all club in $\kappa$.
|
|
||||||
Then
|
|
||||||
\[
|
|
||||||
\bigcap_{\beta < \alpha} C_{\beta}
|
|
||||||
\]
|
|
||||||
is club in $\kappa$.
|
|
||||||
\end{lemma}
|
|
||||||
\begin{warning}
|
|
||||||
This is false for $\alpha = \kappa$:
|
|
||||||
Let $C_{\beta} \coloneqq \{\xi : \xi > \beta\}$.
|
|
||||||
Clearly this is club
|
|
||||||
but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$.
|
|
||||||
|
|
||||||
\end{warning}
|
|
||||||
\begin{refproof}{lem:clubintersection}
|
|
||||||
First let $\alpha = 2$.
|
|
||||||
Let $C, D \subseteq \kappa$
|
|
||||||
be a club.
|
|
||||||
$C \cap D$ is trivially closed:
|
|
||||||
|
|
||||||
Let $\beta < \kappa$. Suppose that $(C \cap D) \cap \beta$
|
|
||||||
is unbounded in $\beta$, so $C \cap \beta$ and $D \cap \beta$
|
|
||||||
are both unbounded in $\beta$,
|
|
||||||
so $\beta \in C \cap D$.
|
|
||||||
|
|
||||||
|
|
||||||
$C \cap D$ is unbounded:
|
|
||||||
|
|
||||||
Take some $\gamma < \kappa$.
|
|
||||||
Let $\gamma_0 = \gamma$
|
|
||||||
and inductively define $\gamma_n$ :
|
|
||||||
If $n$ is even, let $\gamma_n \coloneqq \min C \setminus (\gamma_{n-1}+1)$,
|
|
||||||
otherwise $\gamma_n \coloneqq \min D \setminus (\gamma_{n-1}+1)$.
|
|
||||||
|
|
||||||
Let $\xi = \sup \{\gamma_n : n < \omega\}$.
|
|
||||||
Then $\xi = \sup \{\gamma_{2n + 2} : n < \omega\} \in D$
|
|
||||||
and $\xi \in C$ by the same argument,
|
|
||||||
so $\xi \in C \cap D$
|
|
||||||
(here it is important, that $\cf(\kappa) > \omega$)
|
|
||||||
and $\xi > \gamma$.
|
|
||||||
|
|
||||||
The case $\alpha > 2$ is similar:
|
|
||||||
The intersection is closed by exactly the same argument.%
|
|
||||||
\footnote{``It is even more closed.''}
|
|
||||||
|
|
||||||
Let's prove that $\bigcap \{C_{\beta} : \beta < \alpha\}$
|
|
||||||
is unbounded in $\kappa$.
|
|
||||||
|
|
||||||
We will define a sequence $\langle \gamma_i : i \le \alpha \cdot \omega \rangle$%
|
|
||||||
\footnote{Ordinal multiplication, i.e.~$\alpha \cdot \omega = \sup_{n < \omega} \underbrace{\alpha + \ldots + \alpha}_{n \text{ times}}$.}
|
|
||||||
as follows:
|
|
||||||
|
|
||||||
Let $\gamma_0 \coloneqq \gamma$.
|
|
||||||
Choose
|
|
||||||
\[\gamma_{\alpha \cdot n + \beta + 1} = \min C_{\beta} \setminus (\gamma_{\alpha \cdot n + \beta} + 1)\]
|
|
||||||
and at limits choose the supremum.
|
|
||||||
|
|
||||||
|
|
||||||
Let $\xi = \sup_{i < \alpha \cdot \omega} \gamma_i
|
|
||||||
= \sup_{i < \omega} \gamma_{\alpha \cdot n + \beta + 1} \in \bigcap_{\beta < \alpha} C_\beta$,
|
|
||||||
where we have used that.
|
|
||||||
$\cf(\kappa) > \alpha \cdot \omega$.
|
|
||||||
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
$F \subseteq \cP(a)$ is a \vocab{filter}
|
|
||||||
iff
|
|
||||||
\begin{enumerate}[(a)]
|
|
||||||
\item $X,Y \in F \implies X \cap Y \in F$,
|
|
||||||
\item $X \in F \land X \subseteq Y \subseteq \kappa \implies Y \in F$,
|
|
||||||
\item $\emptyset \not\in F$, $\kappa \in F$.
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
|
|
||||||
Let $\alpha \le \kappa$.
|
|
||||||
We call $F$ \vocab{$< \alpha$-closed}
|
|
||||||
iff for all $\gamma < \alpha$ and $\{X_\beta : \beta < \gamma\} \subseteq F$
|
|
||||||
then $\bigcap \{X_\beta : \beta < \gamma\} \in F$.
|
|
||||||
\end{definition}
|
|
||||||
Intuitively, a filter is a collection of ``big'' subsets of $a$.
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
Let $\kappa$ be regular and uncountable.
|
|
||||||
The \vocab{club filter} is defined as
|
|
||||||
\[
|
|
||||||
\cF_{\kappa} \coloneqq \{X \subseteq \kappa : \exists \text{ club } C \subseteq \kappa .~ C \subseteq X\}.
|
|
||||||
\]
|
|
||||||
\end{definition}
|
|
||||||
Clearly this is a filter.
|
|
||||||
|
|
||||||
We have shown (assuming \AxC to choose contained clubs):
|
|
||||||
\begin{theorem}
|
|
||||||
If $\kappa$ is regular and uncountable.
|
|
||||||
Then $\cF_\kappa$ is a $< \kappa$-closed filter.
|
|
||||||
\end{theorem}
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
Let $\langle A_\beta : \beta < \alpha \rangle$
|
|
||||||
be a sequence of sets.
|
|
||||||
The \vocab{diagonal intersection},
|
|
||||||
is defined to be
|
|
||||||
\[
|
|
||||||
|
|
||||||
\diagi_{\beta < \alpha} A_{\beta} \coloneqq
|
|
||||||
\{\xi < \alpha : \xi \in \bigcap \{A_{\beta} : \beta < \xi\} \}.
|
|
||||||
\]
|
|
||||||
\end{definition}
|
|
||||||
\begin{lemma}
|
|
||||||
Let $\kappa$ be a regular, uncountable cardinal.
|
|
||||||
If $\langle C_{\beta} : \beta < \kappa \rangle$
|
|
||||||
is a sequence of club subsets of $\kappa$,
|
|
||||||
then $\diagi_{\beta < \kappa} C_{\beta}$
|
|
||||||
contains a club.
|
|
||||||
\end{lemma}
|
|
||||||
\begin{proof}
|
|
||||||
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
|
|
||||||
Write $D_{\beta} \coloneqq \bigcap \{C_{\gamma} : \gamma \le \beta\} $
|
|
||||||
for $\beta < \kappa$.
|
|
||||||
Each $D_{\beta}$ is a club,
|
|
||||||
$D_{\beta} \subseteq C_{\beta}$
|
|
||||||
and $D_{\beta} \supseteq D_{\beta'}$
|
|
||||||
for $\beta \le \beta' < \kappa$.
|
|
||||||
|
|
||||||
It suffices to show that $\diagi_{\beta < \kappa} D_{\beta}$
|
|
||||||
contains a club.
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
$\diagi_{\beta < \kappa} D_{\beta}$ is closed in $\kappa$.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
Let $\gamma < \kappa$ be such that $\left( \diagi_{\beta < \kappa} D_{\beta} \right) \cap \gamma$
|
|
||||||
is unbounded in $\gamma$.
|
|
||||||
We aim to show that $\gamma \in \diagi_{\beta < \kappa} D_{\beta}$.
|
|
||||||
Let $\beta_0 < \gamma$.
|
|
||||||
We need to see $\gamma \in D_{\beta_0}$.
|
|
||||||
For each $\beta'$ with $\beta < \beta' < \gamma$,
|
|
||||||
there is some $\beta'' \in \diagi_{\beta < \kappa} D_\beta$
|
|
||||||
with $\beta'' \ge \beta', \beta'' < \gamma$.
|
|
||||||
In particular $\beta'' \in D_{\beta_0}$.
|
|
||||||
|
|
||||||
We showed that $D_{\beta_0} \cap \gamma$
|
|
||||||
is unbounded in $\gamma$,
|
|
||||||
so $\gamma \in D_{\beta_0}$.
|
|
||||||
|
|
||||||
As $\beta_0 < \gamma$ was arbitrary,
|
|
||||||
this shows that $\gamma \in \diagi_{\beta < n} D_\beta$.
|
|
||||||
\end{subproof}
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
$\diagi_{\beta < \kappa} D_{\beta}$
|
|
||||||
is unbounded in $\kappa$.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
Fix $\gamma < \kappa$.
|
|
||||||
We need to find $\delta > \gamma$
|
|
||||||
with $\gamma \in \diagi_{\beta < \kappa} D_\beta$.
|
|
||||||
|
|
||||||
Define $\langle \gamma_n : n < \omega \rangle$
|
|
||||||
as follows:
|
|
||||||
$\gamma_0 \coloneqq \gamma$
|
|
||||||
and
|
|
||||||
\[
|
|
||||||
\gamma_{n+1} \coloneqq \min D_{\gamma_n} \setminus (\gamma_n + 1)
|
|
||||||
\]
|
|
||||||
|
|
||||||
We have $\delta \coloneqq \sup_{n < \omega} \gamma_n \in \kappa$
|
|
||||||
by cofinality of $\kappa$.
|
|
||||||
|
|
||||||
We need to show that $\delta \in D_{\overline{\gamma}}$
|
|
||||||
for all $\overline{\gamma} < \delta$.
|
|
||||||
|
|
||||||
If $\overline{\gamma} < \delta$, then $\overline{\gamma} \le \gamma_n$
|
|
||||||
for some $n < \omega$.
|
|
||||||
For $m \ge n$, $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_{\overline{\gamma}}$.
|
|
||||||
So $D_{\overline{\gamma}} \cap \delta$ is unbounded
|
|
||||||
in $\gamma$, hence $\delta \in D_{\overline{\gamma}}$.
|
|
||||||
\end{subproof}
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
Let $\kappa$ be regular and uncountable.
|
|
||||||
$S \subseteq \kappa$ is called \vocab{stationary} (in $\kappa$)
|
|
||||||
iff $C \cap S \neq \emptyset$
|
|
||||||
for every club $C \subseteq \kappa$.
|
|
||||||
\end{definition}
|
|
||||||
\begin{example}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Every $D \subseteq \kappa$ which is club in $\kappa$
|
|
||||||
is stationary in $\kappa$.
|
|
||||||
\item There exist disjoint stationary sets:\footnote{Note that clubs can never be disjoint, since their intersection is a club.}
|
|
||||||
Let $\kappa = \omega_2$.
|
|
||||||
Let $S_0 \coloneqq \{\xi < \kappa : \cf(\xi) = \omega\}$
|
|
||||||
and $S_1 \coloneqq \{\xi < \kappa : \cf(\xi) = \omega_1\}$.
|
|
||||||
Clearly these are disjoint.
|
|
||||||
They are both stationary:
|
|
||||||
Let $c \subseteq \kappa$ be a club.
|
|
||||||
Let $(\xi_i : i \le \omega_1)$
|
|
||||||
be defined as follows:
|
|
||||||
$\xi_0 \coloneqq \min C$,
|
|
||||||
$\xi_i \coloneqq \min (C \setminus \sup_{j < i} \xi_j)$.
|
|
||||||
For $i \le \omega_1$ we have that $\xi_i = \sup_{j < i} \xi_j$.
|
|
||||||
In particular $\xi_\omega \in S_0 \cap C$
|
|
||||||
and $\xi_{\omega_1} \in S_1 \cap C$.
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
We will show later that if $ \kappa$ is a regular uncountable cardinal,
|
|
||||||
then every stationary $S \subseteq \kappa$ can be written as
|
|
||||||
$S = \bigcup_{i < \kappa} S_i$,
|
|
||||||
where the $S_i$ are stationary and pairwise disjoint.
|
|
||||||
|
|
||||||
|
|
|
@ -142,6 +142,4 @@
|
||||||
\DeclareSimpleMathOperator{cf}
|
\DeclareSimpleMathOperator{cf}
|
||||||
|
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
%\newcommand\diagi{\mathop{\large \Delta}\limits}
|
|
||||||
\newcommand\diagi{\mathop{\large \Delta}}
|
|
||||||
|
|
||||||
|
|
|
@ -37,7 +37,6 @@
|
||||||
\input{inputs/lecture_11}
|
\input{inputs/lecture_11}
|
||||||
\input{inputs/lecture_12}
|
\input{inputs/lecture_12}
|
||||||
\input{inputs/lecture_13}
|
\input{inputs/lecture_13}
|
||||||
\input{inputs/lecture_14}
|
|
||||||
|
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
Loading…
Reference in a new issue