Suggestions by Mirko (pages 1 - 18), thank you!
Some checks failed
Build latex and deploy / checkout (push) Failing after 11m25s
Some checks failed
Build latex and deploy / checkout (push) Failing after 11m25s
This commit is contained in:
parent
97757443c4
commit
bc24bdab44
8 changed files with 87 additions and 46 deletions
|
@ -1,4 +1,4 @@
|
|||
These are my notes on the lecture Probability Theory,
|
||||
These are my notes on the lecture Logic II
|
||||
taught by \textsc{Ralf Schindler}
|
||||
in winter 23/24 at the University Münster.
|
||||
|
||||
|
@ -12,6 +12,6 @@ If you find errors or want to improve something,
|
|||
please send me a message:\\
|
||||
\texttt{lecturenotes@jrpie.de}.
|
||||
|
||||
This notes follow the way the material was presented in the lecture rather
|
||||
These notes follow the way the material was presented in the lecture rather
|
||||
closely. Additions (e.g.~from exercise sheets)
|
||||
and slight modifications have been marked with $\dagger$.
|
||||
|
|
|
@ -31,7 +31,7 @@ Literature
|
|||
\end{definition}
|
||||
\begin{lemma}
|
||||
If $A \le B$,
|
||||
then there is a surjection $g\colon B \twoheadrightarrow B$.
|
||||
then there is a surjection $g\colon B \twoheadrightarrow A$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Fix $f\colon A \hookrightarrow B$.
|
||||
|
@ -150,7 +150,8 @@ Literature
|
|||
\begin{definition}
|
||||
The \vocab{continuum hypothesis} ($\CH$)
|
||||
says that there is no set $A$ such that
|
||||
$\N < A < \R$.
|
||||
$\N < A < \R$,
|
||||
i.e.~every uncountable subset $A \subseteq \R$ is in bijection with $\R$.
|
||||
|
||||
$\CH$ is equivalent to the statement that there is no set $A \subset \R$
|
||||
which is uncountable ($\N < A$)
|
||||
|
|
|
@ -69,9 +69,16 @@
|
|||
But then $x \in A' \subseteq A \lightning$.
|
||||
\end{refproof}
|
||||
\begin{definition}
|
||||
$P \subseteq \R$ is called \vocab{perfect}
|
||||
$P \subseteq \R$ (or, more generally, a subset of any topological space)
|
||||
is called \vocab{perfect}
|
||||
iff $P \neq \emptyset$ and $P = P'$.
|
||||
\end{definition}
|
||||
\begin{example}+
|
||||
Note that being perfect depends on the surrounding topological space:
|
||||
For example, $[0,1] \cap \Q$
|
||||
is perfect as a subset of $\Q$,
|
||||
but not perfect as a subset of $\R$.
|
||||
\end{example}
|
||||
|
||||
We want to prove two things:
|
||||
\begin{itemize}
|
||||
|
@ -122,7 +129,7 @@ We want to prove two things:
|
|||
If $t \neq t' \in \{0,1\}^{\omega}$,
|
||||
then there is some $n$ such that $t\defon{n} \neq t'\defon{n}$,
|
||||
hence $f(t) \in [a_{t\defon{n}}, b_{t\defon{n}}]$
|
||||
and $f(t') \in [a_{t\defon{n}}, b_{t\defon{n}}]$
|
||||
and $f(t') \in [a_{t'\defon{n}}, b_{t'\defon{n}}]$
|
||||
which are disjoint.
|
||||
Thus $f(t) \neq f(t')$, i.e.~$f$ is injective.
|
||||
\end{proof}
|
||||
|
|
|
@ -58,7 +58,7 @@ all condensation points are accumulation points.
|
|||
|
||||
Then
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
A \setminus P &=& \bigcap_{x \in A \setminus P} (a_x, b_x) \cap A.
|
||||
A \setminus P &=& \bigcup_{x \in A \setminus P} (a_x, b_x) \cap A.
|
||||
\end{IEEEeqnarray*}
|
||||
$\subseteq $ holds by the choice of $a_x$ and $b_x$.
|
||||
For $\supseteq$ let $y$ be an element of the RHS.
|
||||
|
|
|
@ -25,9 +25,24 @@ $\ZFC$ stands for
|
|||
y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z).
|
||||
\]
|
||||
|
||||
Let $x = \bigcup y$ denote
|
||||
We write $z = x \cap y$ for
|
||||
\[\forall u.~((u \in z) \implies u \in x \land u \in y),\]
|
||||
$z = x \cup y$ for
|
||||
\[
|
||||
\forall u.~((u \in z) \iff (u \in x \lor u \in y)),
|
||||
\]
|
||||
$z = \bigcap x$ for
|
||||
\[
|
||||
\forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)).
|
||||
\forall u.~((u \in z) \iff (\forall v.~(v \in x \implies u \in v))),
|
||||
\]
|
||||
$z = \bigcup x$ for
|
||||
\[
|
||||
\forall u.~((u \in z) \iff \exists v.~(v \in x \land u \in v))
|
||||
\]
|
||||
and
|
||||
$z = x \setminus y$ for
|
||||
\[
|
||||
\forall u.~((u \in z) \iff (u \in x \land u \not\in y)).
|
||||
\]
|
||||
\end{notation}
|
||||
$\ZFC$ consists of the following axioms:
|
||||
|
@ -86,7 +101,7 @@ $\ZFC$ consists of the following axioms:
|
|||
% (PWA)
|
||||
We write $x = \cP(y)$
|
||||
for
|
||||
$\forall z.~(z \in x \iff x \subseteq z)$.
|
||||
$\forall z.~(z \in x \iff z \subseteq x)$.
|
||||
The power set axiom states
|
||||
\[
|
||||
\forall x.~\exists y.~y=\cP(x).
|
||||
|
@ -103,7 +118,9 @@ $\ZFC$ consists of the following axioms:
|
|||
\yalabel{Axiom of Separation}{(Aus)}{ax:aus}
|
||||
|
||||
Let $\phi$ be some fixed
|
||||
fist order formula in $\cL_\in$.
|
||||
fist order formula in $\cL_\in$
|
||||
with free variables $x, v_1, \ldots, v_p$.
|
||||
Let $b$ be a variable that is not free in $\phi$.
|
||||
Then $\AxAus_{\phi}$
|
||||
states
|
||||
\[
|
||||
|
@ -115,16 +132,11 @@ $\ZFC$ consists of the following axioms:
|
|||
for $\forall x.~(x \in b \iff x \in a \land f(x))$.
|
||||
Then \AxAus can be formulated as
|
||||
\[
|
||||
\forall a.~\exists b.~(b = \{x \in a; \phi(x)\}).
|
||||
\forall a.~\exists b.~(b = \{x \in a | \phi(x)\}).
|
||||
\]
|
||||
\end{axiomschema}
|
||||
|
||||
\begin{notation}
|
||||
\todo{$\cap, \setminus, \bigcap$}
|
||||
% We write $z = x \cap y$ for $\forall u.~((u \in z) \implies u \in x \land u \in y)$,
|
||||
% $Z = x \setminus y$ for ...
|
||||
% $x = \bigcap y$ for ...
|
||||
\end{notation}
|
||||
|
||||
\begin{remark}
|
||||
\AxAus proves that
|
||||
\begin{itemize}
|
||||
|
@ -135,19 +147,22 @@ $\ZFC$ consists of the following axioms:
|
|||
\end{remark}
|
||||
\begin{axiomschema}[\vocab{Replacement} (Fraenkel)]
|
||||
\yalabel{Axiom of Replacement}{(Rep)}{ax:rep}
|
||||
Let $\phi$ be some $\cL_{\in }$ formula.
|
||||
Let $\phi$ be some $\cL_{\in }$ formula
|
||||
with free variables $x, y$.\todo{Allow more variables}
|
||||
Then
|
||||
\[
|
||||
\forall v_1 .~\exists b.~\forall y.~(y \in b \iff \exists x .~(x \in a \land \phi(x,y,v_1,v_p))).
|
||||
\forall x \in a.~\exists !y \phi(x,y) \implies \exists b.~\forall x \in a.~\exists y \in b.~\phi(x,y).
|
||||
% \forall v_1 \ldots \forall v_p .~\forall x.~ \exists y'.~\forall y.~(y = y' \iff \phi(x))
|
||||
% \implies \forall a.~\exists b.~\forall y.~(y \in b \iff \exists x.~(x \in a \land \phi(x))
|
||||
\]
|
||||
\end{axiomschema}
|
||||
|
||||
\begin{axiom}[\vocab{Choice}]
|
||||
\yalabel{Axiom of Choice}{(C)}{ax:c}
|
||||
Every family of non-empty sets has a \vocab{choice set}:
|
||||
Every family of pairwise disjoint non-empty sets has a \vocab{choice set}:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\forall x .~&(&\\
|
||||
&& ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset))\\
|
||||
&& ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset)))\\
|
||||
&& \implies\exists z.~\forall y \in x.~\exists u.~(z \cap y = \{u\})\\
|
||||
&)&
|
||||
\end{IEEEeqnarray*}
|
||||
|
|
|
@ -144,7 +144,7 @@
|
|||
$x \le y \land x \le y \implies x = y$,
|
||||
and
|
||||
\item \vocab{transitive},
|
||||
i.e.~$x \le y \land x \le z \implies x \le z$.
|
||||
i.e.~$x \le y \land y \le z \implies x \le z$.
|
||||
\end{itemize}
|
||||
|
||||
If additionally $\forall x,y.~(x\le y \lor y \le x)$,
|
||||
|
@ -159,32 +159,44 @@
|
|||
of $b$
|
||||
iff
|
||||
\[
|
||||
x \in b \land \lnot \exists y \in b .~(y > x).b .~(y > x).
|
||||
x \in b \land \lnot \exists y \in b .~(y > x).
|
||||
\]
|
||||
We say that $x$ is the \vocab{maximum} of $b$,
|
||||
$x = \text{\vocab{$\max$}}(b)$,
|
||||
iff
|
||||
\[
|
||||
x \in b \land \forall y \in b.~y \le x.
|
||||
\]
|
||||
|
||||
|
||||
In a similar way we define \vocab[Minimal element]{minimal elements}
|
||||
of $b$.
|
||||
and the \vocab{minimum} of $b$.
|
||||
We say that $x $ is an \vocab{upper bound}
|
||||
of $b$ if $\forall y \in b.~(x \ge y)$.
|
||||
Similarly \vocab[Lower bound]{lower bounds}
|
||||
are defined.
|
||||
|
||||
We say $x = \sup(b)$ if $x$ is the minimum
|
||||
We say $x = \text{\vocab{$\sup$}}(b)$ if $x$ is the minimum
|
||||
of the set of upper bounds of $b$.
|
||||
(This does not necessarily exist.)
|
||||
Similarly $\inf(b)$ is defined.
|
||||
Similarly $\text{\vocab{$\inf$}}(b)$ is defined.
|
||||
\end{definition}
|
||||
\begin{remark}+
|
||||
Note that in a partial order,
|
||||
a maximal element is not necessarily a maximum.
|
||||
However for linear orders these notions coincide.
|
||||
\end{remark}
|
||||
\begin{definition}
|
||||
Let $(a, \le_a)$ and $(b, \le_b)$
|
||||
be two partial orders.
|
||||
Then a function $f\colon a\to b$ is caled
|
||||
\vocab{order preserving}
|
||||
Then a function $f\colon a\to b$ is called
|
||||
\vocab{order-preserving}
|
||||
iff
|
||||
\[
|
||||
\forall x,y \in a.~(x \le_a y) \iff f(x) \le_b f(y).
|
||||
\]
|
||||
An order preserving bijection
|
||||
is called an isomorphism.
|
||||
An order-preserving bijection
|
||||
is called an \vocab{isomorphism}.
|
||||
We write $(a,\le_a) \cong (b, \le_b)$
|
||||
if they are isomorphic.
|
||||
\end{definition}
|
||||
|
@ -211,7 +223,7 @@
|
|||
\begin{lemma}
|
||||
Let $(a, \le)$ be a well-order.
|
||||
Let $f\colon a \to a$
|
||||
be an order preserving map.
|
||||
be an order-preserving map.
|
||||
Then $f(x) \ge x$ for all $x \in a$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
|
@ -221,7 +233,7 @@
|
|||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
If $(a, \le )$ is a well order
|
||||
If $(a, \le )$ is a well-order
|
||||
and $f\colon (a, \le) \leftrightarrow (a, \le)$
|
||||
is an isomorphism,
|
||||
then $f$ is the identity.
|
||||
|
@ -239,7 +251,7 @@
|
|||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let $f,g$ be isomorphisms
|
||||
and consider $g^{-1}\circ f \colon (a, \le ) \xrightarrow{\cong} (a, \le )$.
|
||||
and consider $g^{-1}\circ f \colon (a, \le_a) \xrightarrow{\cong} (a, \le_a )$.
|
||||
We have already shown that $g^{-1}\circ f$ must be the identity,
|
||||
so $g = f$.
|
||||
\end{proof}
|
||||
|
@ -250,6 +262,11 @@
|
|||
then write $(a, \le )\defon{x}$
|
||||
for $(\{y \in a | y \le x\}, \le \cap \{y \in a | y \le x\}^2)$.
|
||||
\end{definition}
|
||||
\begin{abuse}+
|
||||
For a partial order $(a, \le_a)$
|
||||
we %\footnote{i.e.~the lazy author of these notes}
|
||||
sometimes just write $a$.
|
||||
\end{abuse}
|
||||
\begin{theorem}
|
||||
Let $(a,\le_a)$ and $(b,\le_b)$ be well-orders.
|
||||
Then exactly one of the following three holds:
|
||||
|
@ -269,7 +286,7 @@
|
|||
so $r$ is an injective function
|
||||
from a subset of $a$ to a subset of $b$.
|
||||
\begin{claim}
|
||||
$r$ is order preserving:
|
||||
$r$ is order-preserving:
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
If $x <_a x'$, then consider the unique $y'$
|
||||
|
@ -287,7 +304,7 @@
|
|||
|
||||
Let $x \coloneqq \min(a \setminus \dom(r))$
|
||||
and $y \coloneqq \min(b\setminus \ran(r))$.
|
||||
Then $(a,\le)\defon{x} \cong (b, \le)\defon{y}$.
|
||||
Then $(a,\le_a)\defon{x} \cong (b, \le_b)\defon{y}$.
|
||||
But now $(x,y) \in r$ which is a contradiction.
|
||||
\end{subproof}
|
||||
\end{proof}
|
||||
|
|
|
@ -3,13 +3,13 @@
|
|||
\begin{theorem}[Zorn]
|
||||
\yalabel{Zorn's Lemma}{Zorn}{thm:zorn}
|
||||
Let $(a, \le )$ be a partial order with $a \neq \emptyset$.
|
||||
Assume that $b \le a$ with $b \neq \emptyset$
|
||||
and $ b$ linearly ordered, $b$ has an upper bound,
|
||||
Assume that for all $b \subseteq a$ with $b \neq \emptyset$
|
||||
and $ b$ linearly ordered, $b$ has an upper bound.
|
||||
Then $a$ has a maximal element.
|
||||
\end{theorem}
|
||||
\begin{refproof}{thm:zorn}
|
||||
Fix $(a, \le )$ as in the hypothesis.
|
||||
Let $A \coloneqq \{ \{(b,x) : x in b\} : b \le a, b \neq \emptyset\}$.
|
||||
Let $A \coloneqq \{ \{(b,x) : x \in b\} : b \subseteq a, b \neq \emptyset\}$.
|
||||
Note that $A$ is a set (use separation on $\cP(\cP(a) \times \bigcup \cP(a))$).
|
||||
Note further that if $b_1 \neq b_2$,
|
||||
then $\{(b_1, x) : x \in b_1\} $
|
||||
|
@ -51,7 +51,7 @@
|
|||
Then $u_0 = f(B_{u_0}^{\le'}) = f(B_{g(u_0)}^{\le''}) = g(u_0)$.
|
||||
Thus $g$ is the identity.
|
||||
\end{subproof}
|
||||
Given the claim, we can now see that $\bigcup W$ is a well order $\le^{\ast\ast}$
|
||||
Given the claim, we can now see that $\bigcup W$ is a well-order $\le^{\ast\ast}$
|
||||
of $a$.
|
||||
Let $B = \{w \in a | w \text{ is a $\le$-upper bound of $b$}\}$
|
||||
(this is not empty by the hypothesis).
|
||||
|
@ -63,7 +63,7 @@
|
|||
\le^{\ast\ast} = \le^{\ast} \cup \{(u,u_0) | u \in b\} \cup \{(u_0,u_0)\}.
|
||||
\]
|
||||
Then $B = B_{u_0}^{\le^{\ast\ast}}$.
|
||||
So $\le^{\ast\ast} \in W$, but now $n_0 \in b$.
|
||||
So $\le^{\ast\ast} \in W$, but now $u_0 \in b$.
|
||||
So $b$ must have a maximum.
|
||||
\end{refproof}
|
||||
|
||||
|
@ -83,7 +83,7 @@
|
|||
\end{corollary}
|
||||
|
||||
\begin{remark}[Cultural enrichment]
|
||||
Other assertion which are equivalent
|
||||
Other assertions which are equivalent
|
||||
to the \yaref{ax:c}:
|
||||
\begin{itemize}
|
||||
\item Every infinite family of non-empty sets
|
||||
|
@ -139,7 +139,7 @@ We have the following principle of induction:
|
|||
|
||||
\begin{definition}
|
||||
A set $x$ is \vocab{transitive},
|
||||
if $\forall y \in x.~y \subseteq x$.
|
||||
iff $\forall y \in x.~y \subseteq x$.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
A set $x$ is called an \vocab{ordinal} (or \vocab{ordinal number})
|
||||
|
@ -196,7 +196,7 @@ Clearly, the $\in$-relation is a well-order on an ordinal $x$.
|
|||
\begin{enumerate}[(a)]
|
||||
\item $\phi(0,0)$
|
||||
\item $\forall z \in \omega. ~\phi(0, z) \implies \phi(0,z+1)$.
|
||||
\item $\forall y \in \omega.((\forall z' \in \omega.~\phi(y,z')) \implies (\forall z \in \omega.~\phi(y+1, z')))$.
|
||||
\item $\forall y \in \omega.~((\forall z' \in \omega.~\phi(y,z')) \implies (\forall z \in \omega.~\phi(y+1, z)))$.
|
||||
\end{enumerate}
|
||||
(a) and (b) are trivial.
|
||||
Fix $y \in \omega$ and
|
||||
|
@ -209,7 +209,8 @@ Clearly, the $\in$-relation is a well-order on an ordinal $x$.
|
|||
so $\phi(y+1, 0)$ is true, since $\phi$ is symmetric.
|
||||
Now if $\phi(y+1,z)$ is true,
|
||||
we want to show $\phi(y+1,z+1)$ is true as well.
|
||||
We have $y + 1 \in z \lor y + 1 = z \lor y + 1 \ni z$
|
||||
We have
|
||||
\[(y + 1 \in z) \lor (y + 1 = z) \lor (y + 1 \ni z)\]
|
||||
by assumption.
|
||||
\begin{itemize}
|
||||
\item If $y + 1 \in z \lor y+1 = z$, then clearly $y + 1 \in z + 1$.
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\begin{remark}[``Constructive'' approach to $\omega_1$ ]
|
||||
There are many well-orders on $\omega$.
|
||||
Let $W$ be the set of all such well orders.
|
||||
Let $W$ be the set of all such well-orders.
|
||||
For $R, S \in W$,
|
||||
write $R \le S$ if $R$ is isomorphic to
|
||||
an initial segment of $S$.
|
||||
|
|
Loading…
Reference in a new issue