Compare commits
No commits in common. "10313b35f1bab115f79268a9257300876418a781" and "b5e2d09090795deb7d4da6df60b6b56fc515e2d1" have entirely different histories.
10313b35f1
...
b5e2d09090
1 changed files with 17 additions and 17 deletions
|
@ -77,24 +77,24 @@ all condensation points are accumulation points.
|
||||||
$P \neq \emptyset$: $\checkmark$
|
$P \neq \emptyset$: $\checkmark$
|
||||||
|
|
||||||
$P \subseteq P'$ (i.e. $P$ is closed):
|
$P \subseteq P'$ (i.e. $P$ is closed):
|
||||||
% \begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
% P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\
|
P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\
|
||||||
% &\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'.
|
&\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'.
|
||||||
% \end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
Let $x \in P$.
|
% Let $x \in P$.
|
||||||
Let $a < x < b$.
|
% Let $a < x < b$.
|
||||||
We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$.
|
% We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$.
|
||||||
Suppose that for all $y \in (a,b) \setminus \{x\}$
|
% Suppose that for all $y \in (a,b) \setminus \{x\}$
|
||||||
there is some $a_y < y < b_y$
|
% there is some $a_y < y < b_y$
|
||||||
with $(a_y, b_y) \cap A$ being at most countable.
|
% with $(a_y, b_y) \cap A$ being at most countable.
|
||||||
Wlog.~$a_y, b_y \in \Q$.
|
% Wlog.~$a_y, b_y \in \Q$.
|
||||||
Then
|
% Then
|
||||||
\[
|
% \[
|
||||||
(a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A].
|
% (a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A].
|
||||||
\]
|
% \]
|
||||||
But then $(a,b) \cap A$ is at most countable
|
% But then $(a,b) \cap A$ is at most countable
|
||||||
contradicting $ x \in P$.
|
% contradicting $ x \in P$.
|
||||||
|
|
||||||
$P' \subseteq P$ :
|
$P' \subseteq P$ :
|
||||||
Let $x \in P'$.
|
Let $x \in P'$.
|
||||||
|
|
Loading…
Reference in a new issue