Merge branch 'master' of https://git.abstractnonsen.se/josia-notes/w23-logic-2
Some checks failed
Build latex and deploy / checkout (push) Failing after 14m10s
Some checks failed
Build latex and deploy / checkout (push) Failing after 14m10s
This commit is contained in:
commit
10313b35f1
3 changed files with 8 additions and 12 deletions
|
@ -26,7 +26,7 @@ Literature
|
|||
|
||||
\begin{definition}
|
||||
Let $A \neq \emptyset$, $B$ be arbitrary sets.
|
||||
We write $A \le B$ ($A$ is not bigger than $B$ )
|
||||
We write $A \le B$ ($A$ is not bigger than $B$)
|
||||
iff there is an injection $f\colon A \hookrightarrow B$.
|
||||
\end{definition}
|
||||
\begin{lemma}
|
||||
|
@ -148,12 +148,12 @@ Literature
|
|||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
The \vocab{continuum hypothesis} ($\CH$ )
|
||||
The \vocab{continuum hypothesis} ($\CH$)
|
||||
says that there is no set $A$ such that
|
||||
$\N < A < \R$.
|
||||
|
||||
$\CH$ is equivalent to the statement that there is no set $A \subset \R$
|
||||
which is uncountable ($\N < A$ )
|
||||
which is uncountable ($\N < A$)
|
||||
and there is no bijection $A \leftrightarrow \R$.
|
||||
\end{definition}
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
|
||||
\begin{remark}
|
||||
\begin{itemize}
|
||||
\item If $\emptyset \neq O \R$
|
||||
\item If $\emptyset \neq O \overset{\text{open}}{\subseteq} \R$
|
||||
then $O \sim \R$.
|
||||
\item If $O \subseteq \R$
|
||||
is open, then $O$ is the union of open intervals
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
\lecture{03}{2023-10–23}{Cantor-Bendixson}
|
||||
|
||||
\begin{theorem}[Cantor-Bendixson]
|
||||
\yaref{thm:cantorbendixson}{Cantor-Bendixson}{Cantor-Bendixson}
|
||||
|
||||
\yalabel{Cantor-Bendixson}{Cantor-Bendixson}{thm:cantorbendixson}
|
||||
If $A \subseteq \R$ is closed,
|
||||
it is either at most countable or else
|
||||
$A$ contains a perfect set.
|
||||
|
@ -30,9 +29,9 @@
|
|||
|
||||
\begin{definition}
|
||||
Let $A \subseteq \R$.
|
||||
We say that $x \in \R$
|
||||
is a \vocab{condensation point} of $A$
|
||||
iff for all $a < x < b$, $(a,b) \cap A$
|
||||
We say that $x \in \R$
|
||||
is a \vocab{condensation point} of $A$
|
||||
iff for all $a < x < b$, $(a,b) \cap A$
|
||||
is uncountable.
|
||||
\end{definition}
|
||||
By the fact we just proved,
|
||||
|
@ -128,6 +127,3 @@ all condensation points are accumulation points.
|
|||
% is at most countable.
|
||||
% Also $A'$ is closed.
|
||||
% \end{remark}
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue