This commit is contained in:
Josia Pietsch 2023-10-25 15:37:22 +02:00
parent 1860f988c2
commit 5f1f4c9fe9
Signed by: josia
GPG Key ID: E70B571D66986A2D

View File

@ -78,24 +78,24 @@ all condensation points are accumulation points.
$P \neq \emptyset$: $\checkmark$
$P \subseteq P'$ (i.e. $P$ is closed):
\begin{IEEEeqnarray*}{rCl}
P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\
&\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'.
\end{IEEEeqnarray*}
% \begin{IEEEeqnarray*}{rCl}
% P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\
% &\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'.
% \end{IEEEeqnarray*}
% Let $x \in P$.
% Let $a < x < b$.
% We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$.
% Suppose that for all $y \in (a,b) \setminus \{x\}$
% there is some $a_y < y < b_y$
% with $(a_y, b_y) \cap A$ being at most countable.
% Wlog.~$a_y, b_y \in \Q$.
% Then
% \[
% (a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A].
% \]
% But then $(a,b) \cap A$ is at most countable
% contradicting $ x \in P$.
Let $x \in P$.
Let $a < x < b$.
We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$.
Suppose that for all $y \in (a,b) \setminus \{x\}$
there is some $a_y < y < b_y$
with $(a_y, b_y) \cap A$ being at most countable.
Wlog.~$a_y, b_y \in \Q$.
Then
\[
(a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A].
\]
But then $(a,b) \cap A$ is at most countable
contradicting $ x \in P$.
$P' \subseteq P$ :
Let $x \in P'$.