This commit is contained in:
parent
10313b35f1
commit
c787dd2b51
3 changed files with 306 additions and 0 deletions
293
inputs/lecture_05.tex
Normal file
293
inputs/lecture_05.tex
Normal file
|
@ -0,0 +1,293 @@
|
|||
\lecture{05}{2023-10-30}{}
|
||||
|
||||
\begin{definition}
|
||||
Zermelo:
|
||||
\[\Zermelo \coloneqq \AoE + \AoF + \AoP + \AoU + \Pow + \AoI + \Aus_{\phi}\]
|
||||
|
||||
Zermelo and Fraenkl:
|
||||
\[
|
||||
{\ZF} \coloneqq Z + (\Rep_{\phi})
|
||||
\]
|
||||
|
||||
\[
|
||||
{\ZFC} \coloneqq \ZF + \Choice
|
||||
\]
|
||||
|
||||
Variants:
|
||||
|
||||
\[
|
||||
{\ZFC^{-}} \coloneqq \ZFC \setminus \Pow.
|
||||
\]
|
||||
\[
|
||||
{\ZFC^{-\infty}} \coloneqq \ZFC \setminus \Inf
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
For sets $x, y$ we write
|
||||
$(x,y)$ for $\{\{x\}, \{x,y\}\}$.
|
||||
\end{definition}
|
||||
\begin{remark}
|
||||
Note that $(x,y) = (a,b) \iff x = a \land y = b$.
|
||||
$\ZFC$ proves that $(x,y)$ always exists.
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}
|
||||
For sets $x_1,\ldots, x_{n+1}$
|
||||
we write
|
||||
\[
|
||||
(x_1,\ldots,x_{n+1}) \coloneqq ((x_1,\ldots,x_n), x_{n+1})
|
||||
\]
|
||||
where we assume that $(x_1,\ldots,x_{n})$
|
||||
is already defined.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
The \vocab{cartesian product}
|
||||
$a \times b$ of two sets $a$ and $b$
|
||||
is defined to be $a \times b \coloneqq \{(x,y) | x \in a \land y \in b\}$.
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
$a \times b$ exists.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Use $\Aus$ over $\cP(\cP(a \cup b))$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
For $a_1,\ldots, a_n$
|
||||
we define
|
||||
\[
|
||||
a_1 \times \ldots \times a_n \coloneqq \left( a_1 \times \ldots\times a_{n-1} \right) \times a_n.
|
||||
\]
|
||||
recursively.
|
||||
|
||||
For $a = a_1 = \ldots = a_n$,
|
||||
we write $a^n$ for $a_1 \times \ldots \times a_n$.
|
||||
\end{definition}
|
||||
|
||||
\begin{remark}
|
||||
The fact that $\ZFC$ can be used
|
||||
to encode all of mathematics,
|
||||
should not be overestimated.
|
||||
It is clumsy to do it that way.
|
||||
Nobody cares anymore.
|
||||
There are better foundations.
|
||||
What makes $\ZFC$ special
|
||||
is that it allows to investigate infinity.
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}
|
||||
An \vocab{$n$-ary relation} $R$ is a subset
|
||||
of $a_1 \times \ldots \times a_n$
|
||||
for some sets $a_1,\ldots,a_n$.
|
||||
|
||||
For a \vocab{binary relation} $R $ (i.e.~$n = 2$)
|
||||
we define
|
||||
\[
|
||||
\dom(R) \coloneqq \{ x | \exists y.~(x,y) \in R\}
|
||||
\]
|
||||
and
|
||||
\[
|
||||
\ran(R) \coloneqq \{ y | \exists x.~(x,y) \in R\}.
|
||||
\]
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
A binary relation $R$
|
||||
is a \vocab{function}
|
||||
iff
|
||||
\[
|
||||
\forall x \in \dom(R).~\exists y.~\forall y'.~(y' = y \iff xRy').
|
||||
\]
|
||||
|
||||
A function $f$ is a function from $d$ to $b$
|
||||
iff $d = \dom(f)$ and $\ran(f) \subseteq b$.
|
||||
|
||||
We write $f\colon d \to b$.
|
||||
The set of all function from $d$ to $b$
|
||||
is denoted by ${}^d b$ or $b^d$.
|
||||
\end{definition}
|
||||
|
||||
\begin{fact}
|
||||
Given sets $d, b$ then
|
||||
${}^d b$ exists.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Apply again $\Aus$ over $\cP(d \times b)$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
We all know how
|
||||
\vocab{injective}, \vocab{surjective}, \vocab{bijective}, $\ldots$
|
||||
are defined.
|
||||
% TODO
|
||||
\end{definition}
|
||||
|
||||
\begin{notation}
|
||||
For $f\colon d \to b$ and $a \subseteq d$
|
||||
we write $f''a \coloneqq \{f(x) : x \in a\}$
|
||||
(the \vocab{pointwise image} of $a$ under $f$).
|
||||
|
||||
(In other mathematical fields, this is sometimes
|
||||
denoted as $f(a)$. We don't do that here.)
|
||||
\end{notation}
|
||||
|
||||
\begin{definition}
|
||||
A binary relation $\le $ on a set $a$
|
||||
is a \vocab{partial order}
|
||||
iff $\le $ is
|
||||
\begin{itemize}
|
||||
\item \vocab{reflexive},
|
||||
i.e.~$x \le x$,
|
||||
\item \vocab{antisymmetric} (sometimes
|
||||
this is also called \vocab{symmetric}),
|
||||
i.e.~
|
||||
$x \le y \land x \le y \implies x = y$,
|
||||
and
|
||||
\item \vocab{transitive},
|
||||
i.e.~$x \le y \land x \le z \implies x \le z$.
|
||||
\end{itemize}
|
||||
|
||||
If additionally $\forall x,y.~(x\le y \lor y \le x)$,
|
||||
$\le $ is called a \vocab{linear order}
|
||||
(or \vocab{total order}).
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
Let $(a, \le )$ be a partial order.
|
||||
Let $b \subseteq a$.
|
||||
We say that $x$ is a \vocab{maximal element}
|
||||
of $b$
|
||||
iff
|
||||
\[
|
||||
x \in b \land \lnot \exists y \in b .~(y > x).b .~(y > x).
|
||||
\]
|
||||
|
||||
In a similar way we define \vocab[Minimal element]{minimal elements}
|
||||
of $b$.
|
||||
We say that $x $ is an \vocab{upper bound}
|
||||
of $b$ if $\forall y \in b.~(x \ge y)$.
|
||||
Similarly \vocab[Lower bound]{lower bounds}
|
||||
are defined.
|
||||
|
||||
We say $x = \sup(b)$ if $x$ is the minimum
|
||||
of the set of upper bounds of $b$.
|
||||
(This does not necessarily exist.)
|
||||
Similarly $\inf(b)$ is defined.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
Let $(a, \le_a)$ and $(b, \le_b)$
|
||||
be two partial orders.
|
||||
Then a function $f\colon a\to b$ is caled
|
||||
\vocab{order preserving}
|
||||
iff
|
||||
\[
|
||||
\forall x,y \in a.~(x \le_a y) \iff f(x) \le_b f(y).
|
||||
\]
|
||||
An order preserving bijection
|
||||
is called an isomorphism.
|
||||
We write $(a,\le_a) \cong (b, \le_b)$
|
||||
if they are isomorphic.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
Let $(a,\le)$ be a partial order.
|
||||
Then $(a,\le)$ is
|
||||
a \vocab{well-order},
|
||||
iff
|
||||
\[
|
||||
\forall b \subseteq a.~b\neq \emptyset \implies \min(b) \text{ exists}.
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{fact}
|
||||
Let $(a, \le )$ be a well-order,
|
||||
then $(a, \le )$ is total.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
For $x,y \in a$
|
||||
consider $\{x,y\}$.
|
||||
Then $\min(\{x,y\}) \le x,y$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
Let $(a, \le)$ be a well-order.
|
||||
Let $f\colon a \to a$
|
||||
be an order preserving map.
|
||||
Then $f(x) \ge x$ for all $x \in a$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Consider $x_0 \coloneqq \min(\{x \in a | f(x) < x\})$.
|
||||
% Then $y_0 \coloneqq f(x_0) < x_0$,
|
||||
% so $f(f(y_0)) < f(x_0) < x_0 = y_0$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
If $(a, \le )$ is a well order
|
||||
and $f\colon (a, \le) \leftrightarrow (a, \le)$
|
||||
is an isomorphism,
|
||||
then $f$ is the identity.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
By the last lemma, we know that
|
||||
$f(x) \ge x$ and $f^{-1}(x) \ge x$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
Suppose $(a, \le_a)$ and $(b, \le_b)$ are well-orderings
|
||||
such that $(a, \le_a) \cong (b, \le_b)$.
|
||||
Then there is a unique isomorphism
|
||||
$f\colon a \to b$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let $f,g$ be isomorphisms
|
||||
and consider $g^{-1}\circ f \colon (a, \le ) \xrightarrow{\cong} (a, \le )$.
|
||||
We have already shown that $g^{-1}\circ f$ must be the identity,
|
||||
so $g = f$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
If $(a, \le )$ is a partial order
|
||||
and if $x \in a$,
|
||||
then write $(a, \le )\defon{x}$
|
||||
for $(\{y \in a | y \le x\}, \le \cap \{y \in a | y \le x\}^2)$.
|
||||
\end{definition}
|
||||
\begin{theorem}
|
||||
Let $(a,\le_a)$ and $(b,\le_b)$ be well-orders.
|
||||
Then exactly one of the following three holds:
|
||||
\begin{enumerate}[(i)]
|
||||
\item $a \cong b$,
|
||||
\item $\exists x \in b.~a \cong b\defon{x}$,
|
||||
\item $\exists x \in a.~a\defon{x} \cong b$.
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Let us define a relation $r \subseteq a \times b$ as follows:
|
||||
Let $(x,y) \in r$ iff $a\defon{x} \cong b\defon{y}$.
|
||||
By the previous lemma,
|
||||
for each $x \in a$, there is at most one $y \in b$
|
||||
such that $(x,y) \in r$
|
||||
and vice versa,
|
||||
so $r$ is an injective function
|
||||
from a subset of $a$ to a subset of $b$.
|
||||
\begin{claim}
|
||||
$r$ is order preserving:
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
If $x <_a x'$, then consider the unique $y'$
|
||||
such that $a\defon{x'} \cong b\defon{y'}$.
|
||||
The isomorphism restricts to $a\defon{x} \cong b\defon{y}$
|
||||
for some $y <_b y'$.
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
$\dom(r) = a \lor \ran(r) = b$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Suppose that $\dom(r) \subsetneq a$
|
||||
and $\ran(r) \susbsetneq b$.
|
||||
|
||||
Let $x \coloneqq \min(a \setminus \dom(r))$
|
||||
and $y \coloneqq \min(b\setminus \ran(r))$.
|
||||
Then $(a,\le)\defon{x} \cong (b, \le)\defon{y}$.
|
||||
But now $(x,y) \in r$ which is a contradiction.
|
||||
\end{subproof}
|
||||
\end{proof}
|
11
logic.sty
11
logic.sty
|
@ -104,6 +104,8 @@
|
|||
|
||||
\DeclareSimpleMathOperator{Con}
|
||||
|
||||
|
||||
\DeclareMathOperator{\Zermelo}{Z}
|
||||
\DeclareSimpleMathOperator{ZF}
|
||||
\DeclareSimpleMathOperator{ZFC}
|
||||
\DeclareSimpleMathOperator{HOD}
|
||||
|
@ -115,6 +117,15 @@
|
|||
\DeclareSimpleMathOperator{Rep}
|
||||
|
||||
\DeclareSimpleMathOperator{Pow}
|
||||
\DeclareSimpleMathOperator{AoE}
|
||||
\DeclareSimpleMathOperator{AoF}
|
||||
\DeclareSimpleMathOperator{AoP}
|
||||
\DeclareSimpleMathOperator{AoU}
|
||||
\DeclareSimpleMathOperator{AoI}
|
||||
\DeclareSimpleMathOperator{Choice}
|
||||
\DeclareSimpleMathOperator{Inf}
|
||||
|
||||
|
||||
\renewcommand{\Aus}{\text{Aus}}
|
||||
% \DeclareSimpleMathOperator{Aus}
|
||||
\DeclareSimpleMathOperator{Infinity}
|
||||
|
|
|
@ -27,6 +27,8 @@
|
|||
\input{inputs/lecture_01}
|
||||
\input{inputs/lecture_02}
|
||||
\input{inputs/lecture_03}
|
||||
% \input{inputs/lecture_04}
|
||||
\input{inputs/lecture_05}
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
|
|
Loading…
Reference in a new issue