This commit is contained in:
parent
cac1563244
commit
858e017a4a
7 changed files with 59 additions and 7 deletions
|
@ -109,6 +109,7 @@
|
||||||
If $A \sim B$, there is a bijection $h\colon A \to B$.
|
If $A \sim B$, there is a bijection $h\colon A \to B$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
Let $f\colon A \hookrightarrow B$ and $g\colon B \hookrightarrow A$
|
Let $f\colon A \hookrightarrow B$ and $g\colon B \hookrightarrow A$
|
||||||
be injective.
|
be injective.
|
||||||
We need to define a bijection $h\colon A \to B$.
|
We need to define a bijection $h\colon A \to B$.
|
||||||
|
@ -146,6 +147,7 @@
|
||||||
It is clear that this is bijective.
|
It is clear that this is bijective.
|
||||||
|
|
||||||
\todo{missing picture $f(A^{\text{odd}}) \subseteq B^{\text{even}}$, $f(A^\infty) = B^\infty$}.
|
\todo{missing picture $f(A^{\text{odd}}) \subseteq B^{\text{even}}$, $f(A^\infty) = B^\infty$}.
|
||||||
|
}{Preimage sequence}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
|
@ -111,7 +111,7 @@ all condensation points are accumulation points.
|
||||||
\]
|
\]
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
\todo{Alternative proof of Cantor-Bendixson}
|
\gist{\todo{Alternative proof of Cantor-Bendixson}}{}
|
||||||
% \begin{remark}
|
% \begin{remark}
|
||||||
% There is an alternative proof of Cantor-Bendixson, going as follows:
|
% There is an alternative proof of Cantor-Bendixson, going as follows:
|
||||||
% Fix $A \subseteq \R$ closed.
|
% Fix $A \subseteq \R$ closed.
|
||||||
|
|
|
@ -5,7 +5,7 @@
|
||||||
\section{\texorpdfstring{$\ZFC$}{ZFC}}
|
\section{\texorpdfstring{$\ZFC$}{ZFC}}
|
||||||
|
|
||||||
% 1900, Russel's paradox
|
% 1900, Russel's paradox
|
||||||
\todo{Russel's Paradox}
|
% \todo{Russel's Paradox}
|
||||||
$\ZFC$ stands for
|
$\ZFC$ stands for
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item \textsc{Zermelo}’s axioms (1905), % crises around 19000
|
\item \textsc{Zermelo}’s axioms (1905), % crises around 19000
|
||||||
|
|
|
@ -108,10 +108,10 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$.
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
|
|
||||||
\todo{notation: $\emptyset, \cap$}
|
\gist{\todo{notation: $\emptyset, \cap$}}{}
|
||||||
|
|
||||||
|
|
||||||
\todo{the following was actually done in lecture 9}
|
\gist{(The following was actually done in lecture 9, but has been moved here for clarity.)}{}
|
||||||
|
|
||||||
$\BGC$ (in German often NBG\footnote{\vocab{Neumann-Bernays-Gödel}})
|
$\BGC$ (in German often NBG\footnote{\vocab{Neumann-Bernays-Gödel}})
|
||||||
is defined to be $\BG$
|
is defined to be $\BG$
|
||||||
|
|
|
@ -60,7 +60,7 @@
|
||||||
Recall the following:
|
Recall the following:
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A substructure $X \subseteq V_\theta$\todo{make this more general. Explain why $V_\theta$ is a model}
|
A substructure $X \subseteq V_\theta$\gist{\todo{make this more general. Explain why $V_\theta$ is a model}}{}
|
||||||
is an \vocab{elementary substructure}
|
is an \vocab{elementary substructure}
|
||||||
of $V_\theta$,
|
of $V_\theta$,
|
||||||
denoted $X \prec V_{\theta}$,\footnote{more formally $(X,\in ) \prec (V_{\theta})$}
|
denoted $X \prec V_{\theta}$,\footnote{more formally $(X,\in ) \prec (V_{\theta})$}
|
||||||
|
|
|
@ -77,6 +77,7 @@
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
2. $\implies$ 1.:
|
2. $\implies$ 1.:
|
||||||
Fix $j\colon V \to M$.
|
Fix $j\colon V \to M$.
|
||||||
Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$.
|
Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$.
|
||||||
|
@ -221,11 +222,60 @@ such that
|
||||||
as otherwise $\forall \delta < \alpha. ~ \kappa \setminus X_\delta \in U$,
|
as otherwise $\forall \delta < \alpha. ~ \kappa \setminus X_\delta \in U$,
|
||||||
i.e.~$\emptyset = (\bigcap_{\delta < \alpha} \kappa \setminus X_{\delta}) \cap X \in U \lightning$.
|
i.e.~$\emptyset = (\bigcap_{\delta < \alpha} \kappa \setminus X_{\delta}) \cap X \in U \lightning$.
|
||||||
We get $[f] = [c_{\delta}]$,
|
We get $[f] = [c_{\delta}]$,
|
||||||
so $\beta = \sigma([f]) = \delta([c_{\delta}]) = j(\delta) = \delta$,
|
so $\beta = \sigma([f]) = \sigma([c_{\delta}]) = j(\delta) = \delta$,
|
||||||
where for the last equality we have applied the induction hypothesis.
|
where for the last equality we have applied the induction hypothesis.
|
||||||
So $j(\alpha) \le \alpha$.
|
So $j(\alpha) \le \alpha$.
|
||||||
|
|
||||||
|
For all $\eta < \kappa$, we have $\eta = \sigma([c_{\eta}]) < \sigma([c_{\id}]) < \sigma([c_{\kappa}])$,
|
||||||
|
so $j(\kappa) > \kappa$.
|
||||||
|
|
||||||
% It is also easy to show $j(\kappa) > \kappa$.
|
% It is also easy to show $j(\kappa) > \kappa$.
|
||||||
|
}{%
|
||||||
|
$2 \implies 1$:
|
||||||
|
Fix $j\colon V \to M$. $U \coloneqq \{X \subseteq \kappa : \kappa \in j(X)\}$ is an UF:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $M \models j(X \cap Y) = j(X) \cap j(Y)$,
|
||||||
|
hence $\kappa \in j(X) \cap j(Y) \implies \kappa \in j(X \cap Y)$
|
||||||
|
\item $M \ni X \subseteq Y \implies Y \in M$, $\emptyset \not\in M$ (same argument)
|
||||||
|
\item $\kappa \in U$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\forall \alpha \in \OR.~ j(\alpha) \in \Ord, j(\alpha) \ge \alpha$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Write $\alpha\in \OR$ and use $\alpha \in \OR \iff M \models j(\alpha) \in \OR$.
|
||||||
|
\item Suppose $j(\alpha) < \alpha$, $\alpha$ minimal,
|
||||||
|
but $M \models j(j(\alpha)) < j(\alpha) \implies j(j(\alpha)) < j(\alpha)$.
|
||||||
|
\end{itemize}
|
||||||
|
\item $j(\kappa) \neq \kappa \implies j(\kappa) > \kappa \implies \kappa \in j(\kappa)$.
|
||||||
|
\end{itemize}
|
||||||
|
\item Ultrafilter: $\kappa \in j(\kappa) = j(X \cup (\kappa \setminus X)) = j(X) \cup j(\kappa \setminus X)$.
|
||||||
|
\item $< \kappa$ closed: For $\theta < \kappa$, $X_i \in U$:
|
||||||
|
$\kappa \in \bigcap_{i < \theta} j(X_i) = j\left( \bigcap_{i < \theta} X_i \right) \in U$.
|
||||||
|
($j(\theta) = \theta$, so $j\left( \langle X_i : i < \theta \rangle \right) = \langle j(X_i) : i < \theta \rangle$.
|
||||||
|
\item Not principal:
|
||||||
|
$\xi < \kappa \implies j(\{\xi\}) = \{\xi\} \not\ni \kappa$.
|
||||||
|
\end{itemize}
|
||||||
|
$1 \implies 2$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Fix $U$. Consider $\leftindex^\kappa V$.
|
||||||
|
\item $f \sim g :\iff \{\xi < \kappa: f(\xi) = g(\xi)\} \in U$.
|
||||||
|
\item $[f] \coloneqq \{g : g \sim f \land g \in V_\alpha \text{ for minimal } \alpha\}$ (Scott's Trick).
|
||||||
|
\item $[f] \tilde{\in } [g] :\iff \{\xi < \kappa: f(\xi ) \in g(\xi)\} \in U$.
|
||||||
|
\item \yaref{thm:los}: $(\cF, \tilde{\in }) \models \phi([f_1], \ldots, [f_k]) \iff \{\xi < \kappa: (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U$.
|
||||||
|
\item $\overline{j}(x) \coloneqq [ \xi \mapsto x]$.
|
||||||
|
\item $\tilde{\in }$ well-founded: lift decreasing sequences ($U$ is $<\kappa$ closed, $ \omega < \kappa$)
|
||||||
|
\item $\tilde{\in }$ set-like $\overset{\yaref{thm:mostowksi}}{\leadsto}$ $(\cF, \tilde{\in }) \overset{\sigma}{\cong} (M, \in )$.
|
||||||
|
\item $j \coloneqq \sigma \circ \overline{j}$.
|
||||||
|
\item $\alpha < \kappa \implies j(\alpha) = \alpha$ (know $j(\alpha) \ge \alpha$):
|
||||||
|
\begin{itemize}
|
||||||
|
\item Induction for $j(\alpha) \le \alpha$: Fix $\alpha$, $\sigma([f]) = \beta \in j(\alpha)$.
|
||||||
|
\item $[f] \tilde{\in }[c_\alpha]$.
|
||||||
|
\item $\exists \delta < \alpha.~[f] = [c_\delta]$ ($U $ is $<\kappa$ closed)
|
||||||
|
\item $\beta = \sigma([f]) = \sigma([c_\delta]) = j(\delta) \overset{\text{IH}}{=} \delta \in \alpha$.
|
||||||
|
\end{itemize}
|
||||||
|
\item $j(\kappa) \neq \kappa$:
|
||||||
|
$\forall \eta < \kappa.~\eta = \sigma([c_{\eta}]) < \sigma([\id]) < \sigma([\kappa])$.
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}[\L o\'s]
|
\begin{theorem}[\L o\'s]
|
||||||
|
|
|
@ -137,7 +137,7 @@ is well founded.
|
||||||
so $M[g] \models \text{``$\{x,y\}$ is the pair of $x$ and $y$''}$.
|
so $M[g] \models \text{``$\{x,y\}$ is the pair of $x$ and $y$''}$.
|
||||||
Hence $M[g] \models \AxPair$.
|
Hence $M[g] \models \AxPair$.
|
||||||
\item \AxUnion:
|
\item \AxUnion:
|
||||||
Similar to \AxPair.\todo{Exercise}
|
Similar to \AxPair.\gist{\todo{Exercise}}{}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue