diff --git a/inputs/lecture_01.tex b/inputs/lecture_01.tex index 0f5a565..0299e94 100644 --- a/inputs/lecture_01.tex +++ b/inputs/lecture_01.tex @@ -109,6 +109,7 @@ If $A \sim B$, there is a bijection $h\colon A \to B$. \end{theorem} \begin{proof} + \gist{% Let $f\colon A \hookrightarrow B$ and $g\colon B \hookrightarrow A$ be injective. We need to define a bijection $h\colon A \to B$. @@ -146,6 +147,7 @@ It is clear that this is bijective. \todo{missing picture $f(A^{\text{odd}}) \subseteq B^{\text{even}}$, $f(A^\infty) = B^\infty$}. +}{Preimage sequence} \end{proof} \begin{definition} diff --git a/inputs/lecture_03.tex b/inputs/lecture_03.tex index 06256d1..c0a5343 100644 --- a/inputs/lecture_03.tex +++ b/inputs/lecture_03.tex @@ -111,7 +111,7 @@ all condensation points are accumulation points. \] \end{refproof} -\todo{Alternative proof of Cantor-Bendixson} +\gist{\todo{Alternative proof of Cantor-Bendixson}}{} % \begin{remark} % There is an alternative proof of Cantor-Bendixson, going as follows: % Fix $A \subseteq \R$ closed. diff --git a/inputs/lecture_04.tex b/inputs/lecture_04.tex index 25845cb..56241f1 100644 --- a/inputs/lecture_04.tex +++ b/inputs/lecture_04.tex @@ -5,7 +5,7 @@ \section{\texorpdfstring{$\ZFC$}{ZFC}} % 1900, Russel's paradox -\todo{Russel's Paradox} +% \todo{Russel's Paradox} $\ZFC$ stands for \begin{itemize} \item \textsc{Zermelo}’s axioms (1905), % crises around 19000 diff --git a/inputs/lecture_08.tex b/inputs/lecture_08.tex index 8edf55c..2a5a0d5 100644 --- a/inputs/lecture_08.tex +++ b/inputs/lecture_08.tex @@ -108,10 +108,10 @@ Furthermore $F\,''a \coloneqq \{y : \exists x \in a .~(x,y) \in F\}$. \end{axiom} -\todo{notation: $\emptyset, \cap$} +\gist{\todo{notation: $\emptyset, \cap$}}{} -\todo{the following was actually done in lecture 9} +\gist{(The following was actually done in lecture 9, but has been moved here for clarity.)}{} $\BGC$ (in German often NBG\footnote{\vocab{Neumann-Bernays-Gödel}}) is defined to be $\BG$ diff --git a/inputs/lecture_15.tex b/inputs/lecture_15.tex index 46fca95..a4af044 100644 --- a/inputs/lecture_15.tex +++ b/inputs/lecture_15.tex @@ -60,7 +60,7 @@ Recall the following: \begin{definition} - A substructure $X \subseteq V_\theta$\todo{make this more general. Explain why $V_\theta$ is a model} + A substructure $X \subseteq V_\theta$\gist{\todo{make this more general. Explain why $V_\theta$ is a model}}{} is an \vocab{elementary substructure} of $V_\theta$, denoted $X \prec V_{\theta}$,\footnote{more formally $(X,\in ) \prec (V_{\theta})$} diff --git a/inputs/lecture_18.tex b/inputs/lecture_18.tex index 2d99308..7499fbd 100644 --- a/inputs/lecture_18.tex +++ b/inputs/lecture_18.tex @@ -77,6 +77,7 @@ \end{enumerate} \end{theorem} \begin{proof} +\gist{% 2. $\implies$ 1.: Fix $j\colon V \to M$. Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$. @@ -221,11 +222,60 @@ such that as otherwise $\forall \delta < \alpha. ~ \kappa \setminus X_\delta \in U$, i.e.~$\emptyset = (\bigcap_{\delta < \alpha} \kappa \setminus X_{\delta}) \cap X \in U \lightning$. We get $[f] = [c_{\delta}]$, -so $\beta = \sigma([f]) = \delta([c_{\delta}]) = j(\delta) = \delta$, +so $\beta = \sigma([f]) = \sigma([c_{\delta}]) = j(\delta) = \delta$, where for the last equality we have applied the induction hypothesis. So $j(\alpha) \le \alpha$. +For all $\eta < \kappa$, we have $\eta = \sigma([c_{\eta}]) < \sigma([c_{\id}]) < \sigma([c_{\kappa}])$, +so $j(\kappa) > \kappa$. + % It is also easy to show $j(\kappa) > \kappa$. +}{% + $2 \implies 1$: + Fix $j\colon V \to M$. $U \coloneqq \{X \subseteq \kappa : \kappa \in j(X)\}$ is an UF: + \begin{itemize} + \item $M \models j(X \cap Y) = j(X) \cap j(Y)$, + hence $\kappa \in j(X) \cap j(Y) \implies \kappa \in j(X \cap Y)$ + \item $M \ni X \subseteq Y \implies Y \in M$, $\emptyset \not\in M$ (same argument) + \item $\kappa \in U$: + \begin{itemize} + \item $\forall \alpha \in \OR.~ j(\alpha) \in \Ord, j(\alpha) \ge \alpha$: + \begin{itemize} + \item Write $\alpha\in \OR$ and use $\alpha \in \OR \iff M \models j(\alpha) \in \OR$. + \item Suppose $j(\alpha) < \alpha$, $\alpha$ minimal, + but $M \models j(j(\alpha)) < j(\alpha) \implies j(j(\alpha)) < j(\alpha)$. + \end{itemize} + \item $j(\kappa) \neq \kappa \implies j(\kappa) > \kappa \implies \kappa \in j(\kappa)$. + \end{itemize} + \item Ultrafilter: $\kappa \in j(\kappa) = j(X \cup (\kappa \setminus X)) = j(X) \cup j(\kappa \setminus X)$. + \item $< \kappa$ closed: For $\theta < \kappa$, $X_i \in U$: + $\kappa \in \bigcap_{i < \theta} j(X_i) = j\left( \bigcap_{i < \theta} X_i \right) \in U$. + ($j(\theta) = \theta$, so $j\left( \langle X_i : i < \theta \rangle \right) = \langle j(X_i) : i < \theta \rangle$. + \item Not principal: + $\xi < \kappa \implies j(\{\xi\}) = \{\xi\} \not\ni \kappa$. + \end{itemize} + $1 \implies 2$: + \begin{itemize} + \item Fix $U$. Consider $\leftindex^\kappa V$. + \item $f \sim g :\iff \{\xi < \kappa: f(\xi) = g(\xi)\} \in U$. + \item $[f] \coloneqq \{g : g \sim f \land g \in V_\alpha \text{ for minimal } \alpha\}$ (Scott's Trick). + \item $[f] \tilde{\in } [g] :\iff \{\xi < \kappa: f(\xi ) \in g(\xi)\} \in U$. + \item \yaref{thm:los}: $(\cF, \tilde{\in }) \models \phi([f_1], \ldots, [f_k]) \iff \{\xi < \kappa: (V, \in ) \models \phi(f_1(\xi), \ldots, f_k(\xi))\} \in U$. + \item $\overline{j}(x) \coloneqq [ \xi \mapsto x]$. + \item $\tilde{\in }$ well-founded: lift decreasing sequences ($U$ is $<\kappa$ closed, $ \omega < \kappa$) + \item $\tilde{\in }$ set-like $\overset{\yaref{thm:mostowksi}}{\leadsto}$ $(\cF, \tilde{\in }) \overset{\sigma}{\cong} (M, \in )$. + \item $j \coloneqq \sigma \circ \overline{j}$. + \item $\alpha < \kappa \implies j(\alpha) = \alpha$ (know $j(\alpha) \ge \alpha$): + \begin{itemize} + \item Induction for $j(\alpha) \le \alpha$: Fix $\alpha$, $\sigma([f]) = \beta \in j(\alpha)$. + \item $[f] \tilde{\in }[c_\alpha]$. + \item $\exists \delta < \alpha.~[f] = [c_\delta]$ ($U $ is $<\kappa$ closed) + \item $\beta = \sigma([f]) = \sigma([c_\delta]) = j(\delta) \overset{\text{IH}}{=} \delta \in \alpha$. + \end{itemize} + \item $j(\kappa) \neq \kappa$: + $\forall \eta < \kappa.~\eta = \sigma([c_{\eta}]) < \sigma([\id]) < \sigma([\kappa])$. + \end{itemize} +} \end{proof} \begin{theorem}[\L o\'s] diff --git a/inputs/lecture_22.tex b/inputs/lecture_22.tex index 12abc76..5af0e30 100644 --- a/inputs/lecture_22.tex +++ b/inputs/lecture_22.tex @@ -137,7 +137,7 @@ is well founded. so $M[g] \models \text{``$\{x,y\}$ is the pair of $x$ and $y$''}$. Hence $M[g] \models \AxPair$. \item \AxUnion: - Similar to \AxPair.\todo{Exercise} + Similar to \AxPair.\gist{\todo{Exercise}}{} \end{itemize} \end{proof}