This commit is contained in:
parent
11f21af966
commit
515ff64ac6
2 changed files with 8 additions and 6 deletions
|
@ -201,6 +201,7 @@ one cofinality.
|
||||||
\label{thm:solovay:p:c2}
|
\label{thm:solovay:p:c2}
|
||||||
Each $T_i$ is stationary
|
Each $T_i$ is stationary
|
||||||
and if $i \neq j$, then $T_i \cap T_j = \emptyset$.
|
and if $i \neq j$, then $T_i \cap T_j = \emptyset$.
|
||||||
|
\footnote{maybe this should not be a claim}
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{subproof}
|
||||||
The first part is true by construction.
|
The first part is true by construction.
|
||||||
|
|
|
@ -42,13 +42,14 @@
|
||||||
\begin{definition}[Ulam]
|
\begin{definition}[Ulam]
|
||||||
A cardinal $\kappa > \aleph_0$ is \vocab{measurable}
|
A cardinal $\kappa > \aleph_0$ is \vocab{measurable}
|
||||||
iff there is an ultrafilter $U$ on $\kappa$,
|
iff there is an ultrafilter $U$ on $\kappa$,
|
||||||
such that $U$ is not principal\footnote{%
|
such that $U$ is not principal\gist{\footnote{%
|
||||||
i.e.~$\{\xi\} \not\in U$ for all $\xi < \kappa$%
|
i.e.~$\{\xi\} \not\in U$ for all $\xi < \kappa$%
|
||||||
}
|
}}{}
|
||||||
and
|
and $< \kappa$-closed\gist{,%
|
||||||
if $\theta < \kappa$
|
i.e.~if $\theta < \kappa$
|
||||||
and $\{X_i : i < \theta\} \subseteq U$,
|
and $\{X_i : i < \theta\} \subseteq U$,
|
||||||
then $\bigcap_{i < \theta} X_i \in U$
|
then $\bigcap_{i < \theta} X_i \in U$.
|
||||||
|
}{.}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{goal}
|
\begin{goal}
|
||||||
|
@ -77,7 +78,7 @@
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
2. $\implies$ 1.:
|
2. $\implies$ 1.:
|
||||||
Fox $j\colon V \to M$.
|
Fix $j\colon V \to M$.
|
||||||
Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$.
|
Let $U = \{X \subseteq \kappa : \kappa \in j(X)\}$.
|
||||||
We need to show that $U$ is an ultrafilter:
|
We need to show that $U$ is an ultrafilter:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
|
Loading…
Reference in a new issue