fixed numbers of lectures and failed merge
Some checks failed
Build latex and deploy / checkout (push) Failing after 13m44s
Some checks failed
Build latex and deploy / checkout (push) Failing after 13m44s
This commit is contained in:
parent
8ce92917ed
commit
1b02d7e7f3
3 changed files with 221 additions and 227 deletions
|
@ -1,4 +1,3 @@
|
|||
<<<<<<< HEAD
|
||||
\lecture{16}{2023-12-11}{}
|
||||
|
||||
Recall \yaref{thm:fodor}.
|
||||
|
@ -238,227 +237,3 @@ then it is true at $\kappa$.
|
|||
|
||||
The proof of \yalabel{thm:silver} is quite elementary,
|
||||
so we will do it now, but the statement can only be fully appreciated later.
|
||||
|
||||
||||||| ede97ee
|
||||
=======
|
||||
\lecture{16}{2023-12-14}{Silver's Theorem}
|
||||
|
||||
We now want to prove \yaref{thm:silver}.
|
||||
More generally, if $\kappa$ is a singular cardinal of uncountable cofinality
|
||||
such that $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$,
|
||||
then $2^{\kappa} = \kappa^+$.
|
||||
|
||||
\begin{remark}
|
||||
The hypothesis of \yaref{thm:silver}
|
||||
is consistent with $\ZFC$.
|
||||
\end{remark}
|
||||
|
||||
We will only proof \yaref{thm:silver} in the special case that $\kappa = \aleph_{\omega_1}$.
|
||||
The general proof differs only in notation.
|
||||
|
||||
\begin{remark}
|
||||
It is important that the cofinality is uncountable.
|
||||
For example it is consistent
|
||||
with $\ZFC$ that
|
||||
$2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$
|
||||
but at the same time $2^{\aleph_{\omega}} = \aleph_{\omega + 2}$.
|
||||
\end{remark}
|
||||
|
||||
\begin{refproof}{thm:silver}
|
||||
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
|
||||
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
|
||||
such that $f_{\lambda}\colon \cP(\lambda) \to \lambda^+$
|
||||
is bijective for each $\lambda < \kappa$.
|
||||
|
||||
For $X \subseteq \aleph_{\omega_1}$
|
||||
define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_X\colon \omega_1 &\longrightarrow & \aleph_{\omega_1} \\
|
||||
\alpha &\longmapsto & f_{\aleph_\alpha}(X \cap \aleph_\alpha).
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\begin{claim}
|
||||
For $X,Y \subseteq \aleph_{\omega_1}$
|
||||
it is $X \neq Y \iff f_X \neq f_Y$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
$X \neq Y$ holds iff $X \cap \aleph_\alpha \neq Y \cap \aleph_\alpha$
|
||||
for some $\alpha < \omega_1$.
|
||||
But then $f_X(\alpha) \neq f_Y(\alpha)$.
|
||||
\end{subproof}
|
||||
|
||||
For $X, Y \subseteq \aleph_{\omega_1}$
|
||||
write $X \le Y$ iff
|
||||
\[
|
||||
\{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}
|
||||
\]
|
||||
is stationary.
|
||||
|
||||
\begin{claim}
|
||||
For all $X,Y \subseteq \aleph_{\omega_1}$,
|
||||
$X \le Y$ or $Y \le X$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Suppose that $X \nleq Y$ and $Y \nleq X$.
|
||||
Then there are clubs $C,D \subseteq \omega_1$
|
||||
such that
|
||||
\[
|
||||
C \cap \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\} = \emptyset
|
||||
\]
|
||||
and
|
||||
\[
|
||||
D \cap \{\alpha < \omega_1 : f_Y(\alpha) \le f_X(\alpha)\} = \emptyset.
|
||||
\]
|
||||
Note that $C \cap D$ is a club.
|
||||
Take some $\alpha \in C \cap D$.
|
||||
But then $f_X(\alpha) \le f_Y(\alpha)$
|
||||
or $f_{Y}(\alpha) \le f_X(\alpha)$ $\lightning$
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
\label{thm:silver:p:c3}.
|
||||
Let $X \subseteq \aleph_{\omega_1}$.
|
||||
Then
|
||||
\[
|
||||
|\{Y \subseteq \aleph_{\omega_1} : Y \le X\}| \le \aleph_{\omega_1}.
|
||||
\]
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Write $A \coloneqq \{Y \subseteq X_{\omega_1} : Y \le X\}$.
|
||||
Suppose $|A| \ge \aleph_{\omega_1 + 1}$.
|
||||
For each $Y \in A$
|
||||
we have that
|
||||
\[
|
||||
S_Y \coloneqq \{\alpha : f_Y(\alpha) \le f_X(\alpha)\}
|
||||
\]
|
||||
is a stationary subset of $\omega_1$.
|
||||
Since by assumption $2^{\aleph_1} = \aleph_2$,
|
||||
there are at most $\aleph_2$ such $S_Y$.
|
||||
|
||||
Suppose that for each $S \subseteq \omega_1$,
|
||||
\[
|
||||
|\{Y \in A : S_Y = S\}| < \aleph_{\omega_1 + 1}.
|
||||
\]
|
||||
Then $A$ is the union of $\le \aleph_2$ many
|
||||
sets of size $< \aleph_{\omega_1 + 1}$.
|
||||
Thus this is a contradiction since $\aleph_{\omega_1 + 1}$
|
||||
is regular.
|
||||
|
||||
So there exists a stationary $S \subseteq \omega_1$
|
||||
such that
|
||||
\[
|
||||
A_1 = \{Y \subseteq \aleph_{\omega_1} : S_Y = S\}
|
||||
\]
|
||||
has cardinality $\aleph_{\omega_1 + 1}$.
|
||||
We have
|
||||
\[f_Y(\alpha) \le f_X(\alpha) = f_{\aleph_\alpha}(X \cap \aleph_\alpha)< \aleph_{\alpha + 1}\]
|
||||
for all $Y \in A_1, \alpha \in S$.
|
||||
|
||||
Let $\langle g_{\alpha} : \alpha \in S \rangle$
|
||||
be such that $g_\alpha\colon \aleph_{\alpha} \twoheadrightarrow f_X(\alpha) + 1$
|
||||
is a surjection for all $\alpha \in S$.
|
||||
|
||||
Then for each $Y \in A_1$ define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\overline{f}_Y\colon S &\longrightarrow & \aleph_{\omega_1} \\
|
||||
\alpha &\longmapsto & \min \{\xi : g_\alpha(\xi) = f_Y(\alpha)\}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Let $D$ be the set of all limit ordinals $< \omega_1$.
|
||||
Then $S \cap D$ is a stationary set:
|
||||
If $C$ is a club, then $C \cap D$ is a club,
|
||||
hence $(S \cap D) \cap C = S \cap (D \cap C) \neq \emptyset$.
|
||||
|
||||
Now to each $Y \in A$ we may associate
|
||||
a regressive function
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
h_Y \colon S \cap D &\longrightarrow & \omega_1 \\
|
||||
\alpha &\longmapsto & \min \{\beta < \alpha : \overline{f}_Y(\alpha) < \aleph_{\beta}\}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
$h_Y$ is regressive, so by \yaref{thm:fodor}
|
||||
there is a stationary $T_Y \subseteq S \cap D$ on which $h_Y$ is constant.
|
||||
|
||||
By an argument as before,
|
||||
there is a stationary $T \subseteq S \cap D$ such that
|
||||
\[
|
||||
|A_2| = \aleph_{\omega_1 +1},
|
||||
\]
|
||||
where $A_2 \coloneqq \{Y \in A_1 : T_Y = T\}$.
|
||||
|
||||
Let $\beta < \omega_1$ be such that for all $Y \in A_2$
|
||||
and for all $\alpha \in T$, $h_Y(\alpha) = \beta$.
|
||||
Then $\overline{f}_Y(\alpha) < \aleph_\beta$
|
||||
for all $Y \in A_2$ and $\alpha \in T$.
|
||||
|
||||
There are at most $\aleph_\beta^{\aleph_1}$ many functions
|
||||
$T \to \aleph_\beta$,
|
||||
but
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\aleph_\beta^{\aleph_1} &\le & 2^{\aleph_\beta \cdot \aleph_1}\\
|
||||
&=& \aleph_{\beta+1} \cdot \aleph_2\\
|
||||
&<& \aleph_{\omega_1}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Suppose that for each function
|
||||
$\tilde{f}\colon T \to \aleph_\beta$
|
||||
there are $< \aleph_{\omega_1 + 1}$ many $Y \in A_2$
|
||||
with $\overline{f}_Y \cap T = \tilde{f}$.
|
||||
|
||||
Then $A_2$ is the union of $<\aleph_{\omega_1}$
|
||||
many sets each of size $< \aleph_{\omega_1 + 1}$ $\lightning$.
|
||||
Hence for some $\tilde{f}\colon T \to \aleph_\beta$,
|
||||
\[
|
||||
|A_3| = \aleph_{\omega_1 + 1},
|
||||
\]
|
||||
where $A_3 = \{Y \in A_2 : \overline{f}_Y\defon{T} = \tilde{f}\}$.
|
||||
|
||||
Let $Y, Y' \in A_3$ and $\alpha \in T$.
|
||||
Then
|
||||
\[
|
||||
\overline{f}_Y(\alpha) = \overline{f}_{Y'}(\alpha),
|
||||
\]
|
||||
hence
|
||||
\[
|
||||
f_{\aleph_\alpha}(Y \cap \aleph_\alpha) = f_Y(\alpha) = f_{Y'}(\alpha) = f_{\aleph_\alpha}(Y' \cap \aleph_\alpha),
|
||||
\]
|
||||
i.e.~$Y \cap \aleph_\alpha = Y' \cap \aleph_\alpha$.
|
||||
Since $T$ is cofinal in $\omega_1$,
|
||||
it follows that $Y = Y'$.
|
||||
So $|A_3| \le 1 \lightning$
|
||||
\end{subproof}
|
||||
|
||||
Let us now define a sequence $\langle X_i : i < \aleph_{\omega_1 + 1} \rangle$
|
||||
of subsets of $\aleph_{\omega_1 + 1}$ as follows:
|
||||
|
||||
Suppose $\langle X_j : j < i \rangle$
|
||||
were already chosen.
|
||||
Consider
|
||||
\[
|
||||
\{Y \subseteq \aleph_{\omega_1} : \exists j < i.~Y \le X_j\}
|
||||
= \bigcup_{j < i} \{Y \subseteq \aleph_{\omega_1} : Y \le X_j\}.
|
||||
\]
|
||||
This set has cardinality $\le \aleph_{\omega_1}$
|
||||
by \yaref{thm:silver:p:c3}.
|
||||
Let $X_i \subseteq \aleph_{\omega_1}$
|
||||
be such that $X_i \nleq X_j$ for all $j < i$.
|
||||
|
||||
|
||||
The set
|
||||
\[
|
||||
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\}
|
||||
= \bigcup_{i < \aleph_{\omega_1 + 1}} \{Y \subseteq \aleph_{\omega_1} : Y \le X_i\}
|
||||
\]
|
||||
has size $\le \aleph_{\omega_1 + 1}$
|
||||
(in fact the size is exactly $\aleph_{\omega_1 + 1}$).
|
||||
|
||||
But
|
||||
\[
|
||||
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\} = \cP(\aleph_{\omega_1 + 1})
|
||||
\]
|
||||
because if $X \subseteq \aleph_{\omega_1 + 1}$
|
||||
is such that $X \nleq X_i$ for all $i < \aleph_{\omega_1 + 1}$,
|
||||
then $X_i \le X$ for all $i < \aleph_{\omega_1 + 1}$,
|
||||
so such a set $X$ does not exist by \yaref{thm:silver:p:c3}.
|
||||
\end{refproof}
|
||||
>>>>>>> 5ee970194987e24c54bfc9c787cb219e15e71520
|
||||
|
|
220
inputs/lecture_17.tex
Normal file
220
inputs/lecture_17.tex
Normal file
|
@ -0,0 +1,220 @@
|
|||
\lecture{17}{2023-12-14}{Silver's Theorem}
|
||||
|
||||
We now want to prove \yaref{thm:silver}.
|
||||
More generally, if $\kappa$ is a singular cardinal of uncountable cofinality
|
||||
such that $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$,
|
||||
then $2^{\kappa} = \kappa^+$.
|
||||
|
||||
\begin{remark}
|
||||
The hypothesis of \yaref{thm:silver}
|
||||
is consistent with $\ZFC$.
|
||||
\end{remark}
|
||||
|
||||
We will only proof \yaref{thm:silver} in the special case that $\kappa = \aleph_{\omega_1}$.
|
||||
The general proof differs only in notation.
|
||||
|
||||
\begin{remark}
|
||||
It is important that the cofinality is uncountable.
|
||||
For example it is consistent
|
||||
with $\ZFC$ that
|
||||
$2^{\aleph_n} = \aleph_{n+1}$ for all $n < \omega$
|
||||
but at the same time $2^{\aleph_{\omega}} = \aleph_{\omega + 2}$.
|
||||
\end{remark}
|
||||
|
||||
\begin{refproof}{thm:silver}
|
||||
We need to count the number of $X \subseteq \aleph_{\omega_1}.$
|
||||
Let us fix $\langle f_\lambda : \lambda < \kappa \text{ an infinite cardinal} \rangle$
|
||||
such that $f_{\lambda}\colon \cP(\lambda) \to \lambda^+$
|
||||
is bijective for each $\lambda < \kappa$.
|
||||
|
||||
For $X \subseteq \aleph_{\omega_1}$
|
||||
define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_X\colon \omega_1 &\longrightarrow & \aleph_{\omega_1} \\
|
||||
\alpha &\longmapsto & f_{\aleph_\alpha}(X \cap \aleph_\alpha).
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\begin{claim}
|
||||
For $X,Y \subseteq \aleph_{\omega_1}$
|
||||
it is $X \neq Y \iff f_X \neq f_Y$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
$X \neq Y$ holds iff $X \cap \aleph_\alpha \neq Y \cap \aleph_\alpha$
|
||||
for some $\alpha < \omega_1$.
|
||||
But then $f_X(\alpha) \neq f_Y(\alpha)$.
|
||||
\end{subproof}
|
||||
|
||||
For $X, Y \subseteq \aleph_{\omega_1}$
|
||||
write $X \le Y$ iff
|
||||
\[
|
||||
\{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\}
|
||||
\]
|
||||
is stationary.
|
||||
|
||||
\begin{claim}
|
||||
For all $X,Y \subseteq \aleph_{\omega_1}$,
|
||||
$X \le Y$ or $Y \le X$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Suppose that $X \nleq Y$ and $Y \nleq X$.
|
||||
Then there are clubs $C,D \subseteq \omega_1$
|
||||
such that
|
||||
\[
|
||||
C \cap \{\alpha < \omega_1 : f_X(\alpha) \le f_Y(\alpha)\} = \emptyset
|
||||
\]
|
||||
and
|
||||
\[
|
||||
D \cap \{\alpha < \omega_1 : f_Y(\alpha) \le f_X(\alpha)\} = \emptyset.
|
||||
\]
|
||||
Note that $C \cap D$ is a club.
|
||||
Take some $\alpha \in C \cap D$.
|
||||
But then $f_X(\alpha) \le f_Y(\alpha)$
|
||||
or $f_{Y}(\alpha) \le f_X(\alpha)$ $\lightning$
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
\label{thm:silver:p:c3}.
|
||||
Let $X \subseteq \aleph_{\omega_1}$.
|
||||
Then
|
||||
\[
|
||||
|\{Y \subseteq \aleph_{\omega_1} : Y \le X\}| \le \aleph_{\omega_1}.
|
||||
\]
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Write $A \coloneqq \{Y \subseteq X_{\omega_1} : Y \le X\}$.
|
||||
Suppose $|A| \ge \aleph_{\omega_1 + 1}$.
|
||||
For each $Y \in A$
|
||||
we have that
|
||||
\[
|
||||
S_Y \coloneqq \{\alpha : f_Y(\alpha) \le f_X(\alpha)\}
|
||||
\]
|
||||
is a stationary subset of $\omega_1$.
|
||||
Since by assumption $2^{\aleph_1} = \aleph_2$,
|
||||
there are at most $\aleph_2$ such $S_Y$.
|
||||
|
||||
Suppose that for each $S \subseteq \omega_1$,
|
||||
\[
|
||||
|\{Y \in A : S_Y = S\}| < \aleph_{\omega_1 + 1}.
|
||||
\]
|
||||
Then $A$ is the union of $\le \aleph_2$ many
|
||||
sets of size $< \aleph_{\omega_1 + 1}$.
|
||||
Thus this is a contradiction since $\aleph_{\omega_1 + 1}$
|
||||
is regular.
|
||||
|
||||
So there exists a stationary $S \subseteq \omega_1$
|
||||
such that
|
||||
\[
|
||||
A_1 = \{Y \subseteq \aleph_{\omega_1} : S_Y = S\}
|
||||
\]
|
||||
has cardinality $\aleph_{\omega_1 + 1}$.
|
||||
We have
|
||||
\[f_Y(\alpha) \le f_X(\alpha) = f_{\aleph_\alpha}(X \cap \aleph_\alpha)< \aleph_{\alpha + 1}\]
|
||||
for all $Y \in A_1, \alpha \in S$.
|
||||
|
||||
Let $\langle g_{\alpha} : \alpha \in S \rangle$
|
||||
be such that $g_\alpha\colon \aleph_{\alpha} \twoheadrightarrow f_X(\alpha) + 1$
|
||||
is a surjection for all $\alpha \in S$.
|
||||
|
||||
Then for each $Y \in A_1$ define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\overline{f}_Y\colon S &\longrightarrow & \aleph_{\omega_1} \\
|
||||
\alpha &\longmapsto & \min \{\xi : g_\alpha(\xi) = f_Y(\alpha)\}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Let $D$ be the set of all limit ordinals $< \omega_1$.
|
||||
Then $S \cap D$ is a stationary set:
|
||||
If $C$ is a club, then $C \cap D$ is a club,
|
||||
hence $(S \cap D) \cap C = S \cap (D \cap C) \neq \emptyset$.
|
||||
|
||||
Now to each $Y \in A$ we may associate
|
||||
a regressive function
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
h_Y \colon S \cap D &\longrightarrow & \omega_1 \\
|
||||
\alpha &\longmapsto & \min \{\beta < \alpha : \overline{f}_Y(\alpha) < \aleph_{\beta}\}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
$h_Y$ is regressive, so by \yaref{thm:fodor}
|
||||
there is a stationary $T_Y \subseteq S \cap D$ on which $h_Y$ is constant.
|
||||
|
||||
By an argument as before,
|
||||
there is a stationary $T \subseteq S \cap D$ such that
|
||||
\[
|
||||
|A_2| = \aleph_{\omega_1 +1},
|
||||
\]
|
||||
where $A_2 \coloneqq \{Y \in A_1 : T_Y = T\}$.
|
||||
|
||||
Let $\beta < \omega_1$ be such that for all $Y \in A_2$
|
||||
and for all $\alpha \in T$, $h_Y(\alpha) = \beta$.
|
||||
Then $\overline{f}_Y(\alpha) < \aleph_\beta$
|
||||
for all $Y \in A_2$ and $\alpha \in T$.
|
||||
|
||||
There are at most $\aleph_\beta^{\aleph_1}$ many functions
|
||||
$T \to \aleph_\beta$,
|
||||
but
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\aleph_\beta^{\aleph_1} &\le & 2^{\aleph_\beta \cdot \aleph_1}\\
|
||||
&=& \aleph_{\beta+1} \cdot \aleph_2\\
|
||||
&<& \aleph_{\omega_1}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Suppose that for each function
|
||||
$\tilde{f}\colon T \to \aleph_\beta$
|
||||
there are $< \aleph_{\omega_1 + 1}$ many $Y \in A_2$
|
||||
with $\overline{f}_Y \cap T = \tilde{f}$.
|
||||
|
||||
Then $A_2$ is the union of $<\aleph_{\omega_1}$
|
||||
many sets each of size $< \aleph_{\omega_1 + 1}$ $\lightning$.
|
||||
Hence for some $\tilde{f}\colon T \to \aleph_\beta$,
|
||||
\[
|
||||
|A_3| = \aleph_{\omega_1 + 1},
|
||||
\]
|
||||
where $A_3 = \{Y \in A_2 : \overline{f}_Y\defon{T} = \tilde{f}\}$.
|
||||
|
||||
Let $Y, Y' \in A_3$ and $\alpha \in T$.
|
||||
Then
|
||||
\[
|
||||
\overline{f}_Y(\alpha) = \overline{f}_{Y'}(\alpha),
|
||||
\]
|
||||
hence
|
||||
\[
|
||||
f_{\aleph_\alpha}(Y \cap \aleph_\alpha) = f_Y(\alpha) = f_{Y'}(\alpha) = f_{\aleph_\alpha}(Y' \cap \aleph_\alpha),
|
||||
\]
|
||||
i.e.~$Y \cap \aleph_\alpha = Y' \cap \aleph_\alpha$.
|
||||
Since $T$ is cofinal in $\omega_1$,
|
||||
it follows that $Y = Y'$.
|
||||
So $|A_3| \le 1 \lightning$
|
||||
\end{subproof}
|
||||
|
||||
Let us now define a sequence $\langle X_i : i < \aleph_{\omega_1 + 1} \rangle$
|
||||
of subsets of $\aleph_{\omega_1 + 1}$ as follows:
|
||||
|
||||
Suppose $\langle X_j : j < i \rangle$
|
||||
were already chosen.
|
||||
Consider
|
||||
\[
|
||||
\{Y \subseteq \aleph_{\omega_1} : \exists j < i.~Y \le X_j\}
|
||||
= \bigcup_{j < i} \{Y \subseteq \aleph_{\omega_1} : Y \le X_j\}.
|
||||
\]
|
||||
This set has cardinality $\le \aleph_{\omega_1}$
|
||||
by \yaref{thm:silver:p:c3}.
|
||||
Let $X_i \subseteq \aleph_{\omega_1}$
|
||||
be such that $X_i \nleq X_j$ for all $j < i$.
|
||||
|
||||
|
||||
The set
|
||||
\[
|
||||
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\}
|
||||
= \bigcup_{i < \aleph_{\omega_1 + 1}} \{Y \subseteq \aleph_{\omega_1} : Y \le X_i\}
|
||||
\]
|
||||
has size $\le \aleph_{\omega_1 + 1}$
|
||||
(in fact the size is exactly $\aleph_{\omega_1 + 1}$).
|
||||
|
||||
But
|
||||
\[
|
||||
\{Y \subseteq \aleph_{\omega_1} : \exists i < \aleph_{\omega_1 + 1} .~Y \le X_i\} = \cP(\aleph_{\omega_1 + 1})
|
||||
\]
|
||||
because if $X \subseteq \aleph_{\omega_1 + 1}$
|
||||
is such that $X \nleq X_i$ for all $i < \aleph_{\omega_1 + 1}$,
|
||||
then $X_i \le X$ for all $i < \aleph_{\omega_1 + 1}$,
|
||||
so such a set $X$ does not exist by \yaref{thm:silver:p:c3}.
|
||||
\end{refproof}
|
|
@ -1,5 +1,4 @@
|
|||
\lecture{17}{2023-12-18}{Large cardinals}
|
||||
|
||||
\lecture{18}{2023-12-18}{Large cardinals}
|
||||
|
||||
\begin{definition}
|
||||
\begin{itemize}
|
||||
|
|
Loading…
Reference in a new issue