This commit is contained in:
parent
ad39e2ac6d
commit
1860f988c2
2 changed files with 112 additions and 5 deletions
|
@ -8,7 +8,7 @@
|
||||||
$A$ contains a perfect set.
|
$A$ contains a perfect set.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{corollary}
|
\begin{corollary}
|
||||||
If $A se \R$ is closed,
|
If $A \subseteq \R$ is closed,
|
||||||
then either $A \le \N$ or $A \sim \R$.
|
then either $A \le \N$ or $A \sim \R$.
|
||||||
\end{corollary}
|
\end{corollary}
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
|
@ -19,9 +19,115 @@
|
||||||
For $\subseteq $, fix $a < x < b$
|
For $\subseteq $, fix $a < x < b$
|
||||||
and let us define $(y_n: n \in \omega)$
|
and let us define $(y_n: n \in \omega)$
|
||||||
as well as $((a_n, b_n): n \in \omega)$.
|
as well as $((a_n, b_n): n \in \omega)$.
|
||||||
|
Set $a_0 \coloneqq a$, $b_0 \coloneqq b$.
|
||||||
% TODO
|
Having defined $(a_n, b_n)$,
|
||||||
|
pick $x \neq y_n \in A \cap (a_n, b_n)$,
|
||||||
|
Then pick $a_n < a_{n+1} < x < b_{n+1} < b_n$
|
||||||
|
such that $y_n \not\in (a_{n+1}, b_{n+1})$.
|
||||||
|
Clearly $y_n \neq y_{n+1}$,
|
||||||
|
hence $\{y_n : n \in \N\}$ is a countable subset of $A \cap (a,b)$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Let $A \subseteq \R$.
|
||||||
|
We say that $x \in \R$
|
||||||
|
is a \vocab{condensation point} of $A$
|
||||||
|
iff for all $a < x < b$, $(a,b) \cap A$
|
||||||
|
is uncountable.
|
||||||
|
\end{definition}
|
||||||
|
By the fact we just proved,
|
||||||
|
all condensation points are accumulation points.
|
||||||
|
|
||||||
|
\begin{refproof}{thm:cantorbendixson}
|
||||||
|
Fix $A \subseteq \R$ closed.
|
||||||
|
We want to see that $A$ is at most countable
|
||||||
|
or there is some perfect $P \subseteq A$.
|
||||||
|
Let $P \coloneqq \{x \in \R | x \text{ is a condensation point of $A$}\}$.
|
||||||
|
Since $A $ is closed, $P \subseteq A$.
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
$A \setminus P$ is at most countable.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
For each $x \in A \setminus P$,
|
||||||
|
there is $a_x < x < b_x$
|
||||||
|
such that $(a_x, b_x) \cap A$
|
||||||
|
is at most countable.
|
||||||
|
Since $\Q$ is dense in $\R$,
|
||||||
|
we may assume that $a_x, b_x \in \Q$.
|
||||||
|
|
||||||
|
Then
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
A \setminus P &=& \bigcap_{x \in A \setminus P} (a_x, b_x) \cap A.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
$\subseteq $ holds by the choice of $a_x$ and $b_x$.
|
||||||
|
For $\supseteq$ let $y$ be an element of the RHS.
|
||||||
|
Then $y \in (a_{x_0}, b_{x_0}) \cap A$ for some $x_0$.
|
||||||
|
As $(a_{x_0}, b_{x_0}) \cap A$ is at most countable,
|
||||||
|
$y \in P$.
|
||||||
|
|
||||||
|
Now we have that $A \setminus P$ is a union
|
||||||
|
of at most countably many sets,
|
||||||
|
each of which is at most countable.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
If $P \neq \emptyset$, the $P$ is perfect.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
$P \neq \emptyset$: $\checkmark$
|
||||||
|
|
||||||
|
$P \subseteq P'$ (i.e. $P$ is closed):
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\
|
||||||
|
&\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'.
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
% Let $x \in P$.
|
||||||
|
% Let $a < x < b$.
|
||||||
|
% We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$.
|
||||||
|
% Suppose that for all $y \in (a,b) \setminus \{x\}$
|
||||||
|
% there is some $a_y < y < b_y$
|
||||||
|
% with $(a_y, b_y) \cap A$ being at most countable.
|
||||||
|
% Wlog.~$a_y, b_y \in \Q$.
|
||||||
|
% Then
|
||||||
|
% \[
|
||||||
|
% (a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A].
|
||||||
|
% \]
|
||||||
|
% But then $(a,b) \cap A$ is at most countable
|
||||||
|
% contradicting $ x \in P$.
|
||||||
|
|
||||||
|
$P' \subseteq P$ :
|
||||||
|
Let $x \in P'$.
|
||||||
|
Then for $a < x < b$ the set
|
||||||
|
$(a,b) \cap P$
|
||||||
|
always has a member $y$ such that $y \neq x$.
|
||||||
|
Since $y \in P$, we get that $(a,b) \cap A$
|
||||||
|
in uncountable, hence $x \in P$.
|
||||||
|
\end{subproof}
|
||||||
|
But now
|
||||||
|
\[
|
||||||
|
A = \overbrace{P}^{\mathclap{\text{perfect, unless $= \emptyset$}}} \cup \underbrace{(A \setminus P)}_{\mathclap{\text{at most countable}}}.
|
||||||
|
\]
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
\todo{Alternative proof of Cantor-Bendixson}
|
||||||
|
% \begin{remark}
|
||||||
|
% There is an alternative proof of Cantor-Bendixson, going as follows:
|
||||||
|
% Fix $A \subseteq \R$ closed.
|
||||||
|
% Define a sequence
|
||||||
|
% \[
|
||||||
|
% A \supseteq A' \supseteq A'' \supseteq \ldots \supseteq \bigcap_{n} A^{(n)}
|
||||||
|
% \supseteq \left( \bigcap_{n} A^{(n)} \right)' \supseteq \ldots
|
||||||
|
% \]
|
||||||
|
% Then $A \setminus A'$ has at most countably many points.
|
||||||
|
% For all $a \in A \setminus A'$
|
||||||
|
% pick $\Q\ni a_x < x < b_x \in \Q$
|
||||||
|
% such that $(a_x, b_x) \cap A = \{x\}$.
|
||||||
|
% Then $A \setminus A' = \bigcup_{x \in A \setminus A'} [(a_x, b_x) \cap A]$
|
||||||
|
% is at most countable.
|
||||||
|
% Also $A'$ is closed.
|
||||||
|
% \end{remark}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -26,6 +26,7 @@
|
||||||
|
|
||||||
\input{inputs/lecture_01}
|
\input{inputs/lecture_01}
|
||||||
\input{inputs/lecture_02}
|
\input{inputs/lecture_02}
|
||||||
|
\input{inputs/lecture_03}
|
||||||
|
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
Loading…
Reference in a new issue