From 1860f988c28edee83634ade1c078e457e5544c39 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Mon, 23 Oct 2023 23:45:24 +0200 Subject: [PATCH] lecture 03 --- inputs/lecture_03.tex | 116 ++++++++++++++++++++++++++++++++++++++++-- logic2.tex | 1 + 2 files changed, 112 insertions(+), 5 deletions(-) diff --git a/inputs/lecture_03.tex b/inputs/lecture_03.tex index 1404146..fb71262 100644 --- a/inputs/lecture_03.tex +++ b/inputs/lecture_03.tex @@ -8,7 +8,7 @@ $A$ contains a perfect set. \end{theorem} \begin{corollary} - If $A se \R$ is closed, + If $A \subseteq \R$ is closed, then either $A \le \N$ or $A \sim \R$. \end{corollary} \begin{fact} @@ -16,12 +16,118 @@ \end{fact} \begin{proof} $\supseteq$ is clear. - For $\subseteq $, fix $a < x < b$ + For $\subseteq $, fix $a < x < b$ and let us define $(y_n: n \in \omega)$ as well as $((a_n, b_n): n \in \omega)$. - - % TODO - + Set $a_0 \coloneqq a$, $b_0 \coloneqq b$. + Having defined $(a_n, b_n)$, + pick $x \neq y_n \in A \cap (a_n, b_n)$, + Then pick $a_n < a_{n+1} < x < b_{n+1} < b_n$ + such that $y_n \not\in (a_{n+1}, b_{n+1})$. + Clearly $y_n \neq y_{n+1}$, + hence $\{y_n : n \in \N\}$ is a countable subset of $A \cap (a,b)$. \end{proof} +\begin{definition} + Let $A \subseteq \R$. + We say that $x \in \R$ + is a \vocab{condensation point} of $A$ + iff for all $a < x < b$, $(a,b) \cap A$ + is uncountable. +\end{definition} +By the fact we just proved, +all condensation points are accumulation points. + +\begin{refproof}{thm:cantorbendixson} + Fix $A \subseteq \R$ closed. + We want to see that $A$ is at most countable + or there is some perfect $P \subseteq A$. + Let $P \coloneqq \{x \in \R | x \text{ is a condensation point of $A$}\}$. + Since $A $ is closed, $P \subseteq A$. + + \begin{claim} + $A \setminus P$ is at most countable. + \end{claim} + \begin{subproof} + For each $x \in A \setminus P$, + there is $a_x < x < b_x$ + such that $(a_x, b_x) \cap A$ + is at most countable. + Since $\Q$ is dense in $\R$, + we may assume that $a_x, b_x \in \Q$. + + Then + \begin{IEEEeqnarray*}{rCl} + A \setminus P &=& \bigcap_{x \in A \setminus P} (a_x, b_x) \cap A. + \end{IEEEeqnarray*} + $\subseteq $ holds by the choice of $a_x$ and $b_x$. + For $\supseteq$ let $y$ be an element of the RHS. + Then $y \in (a_{x_0}, b_{x_0}) \cap A$ for some $x_0$. + As $(a_{x_0}, b_{x_0}) \cap A$ is at most countable, + $y \in P$. + + Now we have that $A \setminus P$ is a union + of at most countably many sets, + each of which is at most countable. + \end{subproof} + + \begin{claim} + If $P \neq \emptyset$, the $P$ is perfect. + \end{claim} + \begin{subproof} + $P \neq \emptyset$: $\checkmark$ + + $P \subseteq P'$ (i.e. $P$ is closed): + \begin{IEEEeqnarray*}{rCl} + P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\ + &\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'. + \end{IEEEeqnarray*} + + % Let $x \in P$. + % Let $a < x < b$. + % We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$. + % Suppose that for all $y \in (a,b) \setminus \{x\}$ + % there is some $a_y < y < b_y$ + % with $(a_y, b_y) \cap A$ being at most countable. + % Wlog.~$a_y, b_y \in \Q$. + % Then + % \[ + % (a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A]. + % \] + % But then $(a,b) \cap A$ is at most countable + % contradicting $ x \in P$. + + $P' \subseteq P$ : + Let $x \in P'$. + Then for $a < x < b$ the set + $(a,b) \cap P$ + always has a member $y$ such that $y \neq x$. + Since $y \in P$, we get that $(a,b) \cap A$ + in uncountable, hence $x \in P$. + \end{subproof} + But now + \[ + A = \overbrace{P}^{\mathclap{\text{perfect, unless $= \emptyset$}}} \cup \underbrace{(A \setminus P)}_{\mathclap{\text{at most countable}}}. + \] +\end{refproof} + +\todo{Alternative proof of Cantor-Bendixson} +% \begin{remark} +% There is an alternative proof of Cantor-Bendixson, going as follows: +% Fix $A \subseteq \R$ closed. +% Define a sequence +% \[ +% A \supseteq A' \supseteq A'' \supseteq \ldots \supseteq \bigcap_{n} A^{(n)} +% \supseteq \left( \bigcap_{n} A^{(n)} \right)' \supseteq \ldots +% \] +% Then $A \setminus A'$ has at most countably many points. +% For all $a \in A \setminus A'$ +% pick $\Q\ni a_x < x < b_x \in \Q$ +% such that $(a_x, b_x) \cap A = \{x\}$. +% Then $A \setminus A' = \bigcup_{x \in A \setminus A'} [(a_x, b_x) \cap A]$ +% is at most countable. +% Also $A'$ is closed. +% \end{remark} + + diff --git a/logic2.tex b/logic2.tex index c430f4a..f0624db 100644 --- a/logic2.tex +++ b/logic2.tex @@ -26,6 +26,7 @@ \input{inputs/lecture_01} \input{inputs/lecture_02} +\input{inputs/lecture_03} \cleardoublepage