2023-11-06 16:22:31 +01:00
\lecture { 06} { 2023-11-06} { }
\begin { theorem} [Zorn]
\yalabel { Zorn's Lemma} { Zorn} { thm:zorn}
Let $ ( a, \le ) $ be a partial order with $ a \neq \emptyset $ .
2023-12-03 02:50:36 +01:00
Assume that for all $ b \subseteq a $ with $ b \neq \emptyset $
and $ b $ linearly ordered, $ b $ has an upper bound.
2023-11-06 16:22:31 +01:00
Then $ a $ has a maximal element.
\end { theorem}
2023-11-13 20:21:51 +01:00
\begin { refproof} { thm:zorn}
2024-02-15 04:44:48 +01:00
\gist { %
2023-11-06 16:22:31 +01:00
Fix $ ( a, \le ) $ as in the hypothesis.
2023-12-03 02:50:36 +01:00
Let $ A \coloneqq \{ \{ ( b,x ) : x \in b \} : b \subseteq a, b \neq \emptyset \} $ .
2023-11-06 16:22:31 +01:00
Note that $ A $ is a set (use separation on $ \cP ( \cP ( a ) \times \bigcup \cP ( a ) ) $ ).
Note further that if $ b _ 1 \neq b _ 2 $ ,
then $ \{ ( b _ 1 , x ) : x \in b _ 1 \} $
and $ \{ ( b _ 2 , x ) : x \in b _ 2 \} $ are disjoint.
2023-11-13 20:28:21 +01:00
Hence the \yaref { ax:c}
2023-11-06 16:22:31 +01:00
gives us a choice function $ f $ on $ A $ ,
i.e.~$ \forall b \in \cP ( a ) \setminus \{ \emptyset \} .~ ( f ( b ) \in b ) $ .
Now define a binary relation $ \le ^ \ast $ :
We let $ W $ denote the set of all well-orderings $ \le ' $
of subsets $ b \subseteq a $ ,
such that for all $ u,v \in b $
if $ u \le ' v $ then $ u \le v $
and for all $ u \in b $
and
\[
B_ u^ { \le '} \coloneqq \{ w \in a : w \text { is an $ \le $ -upper bound of $ \{ v \in b : v \le ' u \} $ } \}
\]
then $ B _ u ^ { \le ' } \neq \emptyset $ and $ f ( B ^ { \le ' } _ u ) = u $ .
\begin { claim}
If $ \le ', \le '' \in W $ ,
then $ \le ' \subseteq \le '' $ or $ \le '' \subseteq \le ' $ .
\end { claim}
\begin { subproof}
Let $ \le ' \in W $ be a well-ordering of $ b \subseteq a $
and let $ \le '' \in W $ be a well-ordering on $ c \subseteq a $ .
We know that wlog.~$ ( b, \le ' ) \cong ( c, \le '' ) $
or $ \exists v \in c .~ ( b, \le ' ) \cong ( c, \le '' ) \defon { v } $ .
Let $ g \colon b \to c $ or $ g \colon b \to c \defon { v } $ be a witness.
We want to show that $ g = \id $ .
Suppose that $ g \neq \id $ .
Let $ u _ 0 \in b $ be $ \le ' $ -minimal such that $ g ( u _ 0 ) \neq u _ 0 $ .
Writing $ \overline { g } \coloneqq g \defon { \{ w \in b: w <' u _ 0 \} } $ ,
then $ ( b, \le ' ) \defon { u _ 0 } \cong ( c, \le '' ) \defon { g ( u _ 0 ) } $
and $ \overline { g } $ is in fact the identity on $ \{ w \in b | w \le ' u _ 0 \} $
but this means $ \{ w \in b | w <' u _ 0 \} = \{ w \in c | w <'' g ( u _ 0 ) \} $
and $ B _ { u _ 0 } ^ { \le ' } = B _ { g ( u _ 0 ) } ^ { \le '' } \neq \emptyset $ .
Then $ u _ 0 = f ( B _ { u _ 0 } ^ { \le ' } ) = f ( B _ { g ( u _ 0 ) } ^ { \le '' } ) = g ( u _ 0 ) $ .
Thus $ g $ is the identity.
\end { subproof}
2023-12-03 02:50:36 +01:00
Given the claim, we can now see that $ \bigcup W $ is a well-order $ \le ^ { \ast \ast } $
2023-11-06 16:22:31 +01:00
of $ a $ .
Let $ B = \{ w \in a | w \text { is a $ \le $ - upper bound of $ b$ } \} $
(this is not empty by the hypothesis).
Suppose that $ b $ does not have a maximum.
Then $ B \cap b = \emptyset $ .
Now $ f ( B ) = u _ 0 $
and let
\[
\le ^ { \ast \ast } = \le ^ { \ast } \cup \{ (u,u_ 0) | u \in b\} \cup \{ (u_ 0,u_ 0)\} .
\]
Then $ B = B _ { u _ 0 } ^ { \le ^ { \ast \ast } } $ .
2023-12-03 02:50:36 +01:00
So $ \le ^ { \ast \ast } \in W $ , but now $ u _ 0 \in b $ .
2023-11-06 16:22:31 +01:00
So $ b $ must have a maximum.
2024-02-15 04:44:48 +01:00
\todo { Why does this prove the lemma?}
} {
\begin { itemize}
\item $ A \coloneqq \{ \{ ( b,x ) : x \in b \} , b \subseteq a, b \neq \emptyset \} $ .
\item \AxC $ \leadsto $ choice function on $ A $ ,
$ f \colon \cP ( a ) \setminus \{ \emptyset \} \to a $ , $ f ( b ) \in b $ .
\item $ \le ^ \ast $ on $ a $ :
\begin { itemize}
\item $ W \coloneqq \{ \le ' \text { wo on } b \subseteq a : \forall u,b \in b.~u \le ' v \implies u \le v, B _ u ^ { \le ' } \neq \emptyset , u = f ( B ^ { \le ' } _ u ) \} $ where
\item $ B _ u ^ { \le ' } = \{ w \in a : w \text { $ \le $ - upper bound of } \{ v \in b : v <' u \} \} $ .
\end { itemize}
\item $ \le ', \le '' \in W \implies \le ' \substack { \subseteq \\ \supseteq } \le '' $ :
\begin { itemize}
\item $ ( b, \le ' ) \overset { g } { \cong } ( c, \le '' ) ( \defon { v } ) $ .
\item $ g = \id _ b $ :
\begin { itemize}
\item $ u _ 0 $ $ \le ' $ minimal with $ g ( u _ 0 ) \neq u _ 0 $ .
\item $ \{ w \in b : w <' u _ 0 \} \overset { g \defon { \ldots } } { = } \{ w \in c : w <'' g ( u _ 0 ) \} $ .
\item $ B ^ { \le ' } _ { u _ 0 } = B _ { g ( u _ 0 ) } ^ { \le '' } \neq \emptyset $ ,
so $ u _ 0 = f ( B ^ { \le ' } _ { u _ 0 } ) = f ( B ^ { \le '' } _ { g ( u _ 0 ) } ) = g ( u _ 0 ) \lightning $
\end { itemize}
\end { itemize}
\item $ \le ^ \ast \coloneqq \bigcup W $ is wo on $ b \subseteq a $ .
\item Suppose $ b $ has no maximum. Then $ B \cap b = \emptyset $ .
\item $ u _ 0 \coloneqq f ( B ) $ , $ \le ^ { \ast \ast } = \le ^ \ast \cup \{ ( u,u _ 0 ) | u \in b \} \cup \{ ( u _ 0 ,u _ 0 ) \} $ .
\item $ B = B _ { u _ 0 } ^ { \le ^ { \ast \ast } } $ , so $ \le ^ { \ast \ast } \in W $ ,
but $ u _ 0 \in b \lightning $ . ?
\end { itemize}
}
2023-11-13 20:21:51 +01:00
\end { refproof}
2023-11-06 16:22:31 +01:00
\begin { remark}
2023-11-13 20:28:21 +01:00
Over $ \ZF $ the \yaref { ax:c} and \yaref { thm:zorn}
2023-11-06 16:22:31 +01:00
are equivalent.
\end { remark}
\begin { corollary} [Hausdorff's maximality principle]
Let $ a \neq \emptyset $ .
Let $ A \subseteq \cP ( a ) $ be such that $ \forall B \subseteq A $ ,
if $ x \subseteq y \lor y \subseteq x $
for all $ x,y \in B $ ,
then there is some $ z \in A $
such that $ x \subseteq z $ for all $ x \in B $ .
Then $ A $ contains a $ \subseteq $ -maximal element.
\end { corollary}
2024-02-15 04:44:48 +01:00
\gist { %
2023-11-06 16:22:31 +01:00
\begin { remark} [Cultural enrichment]
2023-12-03 02:50:36 +01:00
Other assertions which are equivalent
2023-11-13 20:28:21 +01:00
to the \yaref { ax:c} :
2023-11-06 16:22:31 +01:00
\begin { itemize}
\item Every infinite family of non-empty sets
$ \langle a _ i : i \in I \rangle $
has non-empty product,
i.e.
\[
\prod _ { i \in I} a_ i \neq \emptyset .%\footnote{This is clearly true.}
\]
\item Every set can be well-ordered.%\footnote{This is clearly false.}
\end { itemize}
\end { remark}
2024-02-15 04:44:48 +01:00
} { }
2023-11-06 16:22:31 +01:00
% \begin{remark}
% The axiom of choice is true.
% \end{remark}
\pagebreak
\subsection { The Ordinals}
2024-02-15 04:44:48 +01:00
\gist {
2023-11-06 16:22:31 +01:00
\begin { goal}
We want to define nice representatives of the equivalence classes
of well-orders.
% TODO theorem
\end { goal}
2023-11-13 20:21:51 +01:00
Recall that \AxInf states the existence of an inductive set $ x $ .
2023-11-06 16:22:31 +01:00
We can hence form the smallest inductive set
\[
\omega \coloneqq \bigcap \{ x : x \text { is inductive} \}
\]
Note that $ \omega $ exists, as it is a subset of the inductive
2023-11-13 20:21:51 +01:00
set given by \AxInf .
2023-11-06 16:22:31 +01:00
We call $ \omega $ the set of \vocab { natural numbers} .
2024-02-15 04:44:48 +01:00
} { }
2023-11-06 16:22:31 +01:00
\begin { notation}
We write $ 0 $ for $ \emptyset $ ,
and $ y + 1 $ for $ y \cup \{ y \} $ .
\end { notation}
2023-11-13 20:21:51 +01:00
With this notation the \AxInf is equivalent to
2023-11-06 16:22:31 +01:00
\[
\exists x_ 0.~(0 \in x_ 0 \land \forall n. ~(n \in x_ 0 \implies n+1 \in x_ 0)).
\]
We have the following principle of induction:
\begin { lemma}
\yalabel { Induction} { Induction} { lem:induction}
Let $ A \subseteq \omega $ such that $ 0 \in A $
and for each $ y \in A $ , we have that $ y + 1 \in A $ .
Then $ A = \omega $ .
\end { lemma}
\begin { proof}
Clearly $ A $ is an inductive set,
hence $ \omega \subseteq A $ .
\end { proof}
\begin { definition}
A set $ x $ is \vocab { transitive} ,
2023-12-03 02:50:36 +01:00
iff $ \forall y \in x.~y \subseteq x $ .
2023-11-06 16:22:31 +01:00
\end { definition}
\begin { definition}
A set $ x $ is called an \vocab { ordinal} (or \vocab { ordinal number} )
iff $ x $ is transitive
and for all $ y, z \in x $ ,
we have that $ y = z $ , $ y \in z $ or $ y \ni z $ .
\end { definition}
2024-02-15 04:44:48 +01:00
\gist {
2023-11-06 16:22:31 +01:00
Clearly, the $ \in $ -relation is a well-order on an ordinal $ x $ .
\begin { remark}
This definition is due to \textsc { John von Neumann} .
\end { remark}
2024-02-15 04:44:48 +01:00
} { }
2023-11-06 16:22:31 +01:00
\begin { lemma}
Each natural number (i.e.~element of $ \omega $ )
is an ordinal.
\end { lemma}
\begin { proof}
2024-02-15 04:44:48 +01:00
\gist {
2023-11-06 16:22:31 +01:00
We use \yaref { lem:induction} .
Clearly $ \emptyset $ is an ordinal.
Now let $ \alpha $ be an ordinal.
We need to show that $ \alpha + 1 $ is an ordinal.
It is transitive, since $ \alpha $ is transitive
and $ \alpha \subseteq ( \alpha + 1 ) $ .
Let $ x, y \in ( \alpha + 1 ) $ .
If $ x, y \in \alpha $ , we know that $ x = y \lor x \in y \lor x \ni y $
since $ \alpha $ is an ordinal.
Suppose $ x = \alpha $ .
Then either $ y = x $ or $ y \in \alpha = x $ .
2024-02-15 04:44:48 +01:00
} { Induction}
2023-11-06 16:22:31 +01:00
\end { proof}
\begin { lemma}
$ \omega $ is an ordinal.
\end { lemma}
\begin { proof}
$ \omega $ is transitive:
Let $ y \in \omega $ . Let us show by \yaref { lem:induction} ,
that $ y \subseteq \omega $ .
For $ y = \emptyset $ this is clear.
Suppose that $ y \in \omega $ with $ y \subseteq \omega $ .
But now $ \{ y \} \subseteq \omega $ ,
so $ y + 1 = y \cup \{ y \} \subseteq \omega $ .
$ \omega $ is well-ordered by $ \in $ :
We do a nested induction. First let
\[
\phi (y,z) \coloneqq y \in z \lor y \ni z \lor y = z.
\]
We want to show:
\begin { enumerate} [(a)]
\item $ \phi ( 0 , 0 ) $
\item $ \forall z \in \omega . ~ \phi ( 0 , z ) \implies \phi ( 0 ,z + 1 ) $ .
2023-12-03 02:50:36 +01:00
\item $ \forall y \in \omega .~ ( ( \forall z' \in \omega .~ \phi ( y,z' ) ) \implies ( \forall z \in \omega .~ \phi ( y + 1 , z ) ) ) $ .
2023-11-06 16:22:31 +01:00
\end { enumerate}
(a) and (b) are trivial.
Fix $ y \in \omega $ and
suppose that $ \forall z' \in \omega .~ \phi ( y, z' ) $ .
We want to show that $ \forall z \in \omega .~ \phi ( y + 1 , z ) $ .
We already know that $ \forall z \in \omega .~ \phi ( 0 ,z ) $ holds
by (b).
In particular, $ \phi ( 0 ,y + 1 ) $ holds,
so $ \phi ( y + 1 , 0 ) $ is true, since $ \phi $ is symmetric.
Now if $ \phi ( y + 1 ,z ) $ is true,
we want to show $ \phi ( y + 1 ,z + 1 ) $ is true as well.
2023-12-03 02:50:36 +01:00
We have
\[ ( y + 1 \in z ) \lor ( y + 1 = z ) \lor ( y + 1 \ni z ) \]
2023-11-06 16:22:31 +01:00
by assumption.
\begin { itemize}
\item If $ y + 1 \in z \lor y + 1 = z $ , then clearly $ y + 1 \in z + 1 $ .
\item If $ y + 1 \ni z $ , then either $ z = y $ or $ z \in y $ .
\begin { itemize}
\item In the first case, $ z + 1 = y + 1 $ .
\item Suppose that $ z \in y $ .
Then by the induction hypothesis $ \phi ( y, z + 1 ) $ holds.
2023-11-13 20:21:51 +01:00
If $ y \in z + 1 $ , then $ \{ y,z \} $ would violate \AxFund .
2023-11-06 16:22:31 +01:00
If $ y = z + 1 $ , then $ z + 1 \in y + 1 $ .
If $ z + 1 \in y $ , then $ z + 1 \in y + 1 $ as well.
\end { itemize}
\end { itemize}
\end { proof}