2023-11-27 16:07:23 +01:00
\lecture { 12} { 2023-11-27} { }
\subsection { Ordinal arithmetic}
We define $ + $ , $ \cdot $ and exponentiation
for ordinals as follows:
Fix an ordinal $ \beta $ .
We recursively define
\begin { IEEEeqnarray*} { rClClr}
\beta & +& 0 & \coloneqq & \beta \\
2024-02-14 02:06:55 +01:00
\beta & +& (\alpha + 1)& \coloneqq & (\beta + \alpha ) + 1,\\
2023-11-27 16:07:23 +01:00
\beta & +& \lambda & \coloneqq & \sup _ { \alpha < \lambda } \beta + \alpha & ~ ~\text { for limit ordinals $ \lambda $ }
\end { IEEEeqnarray*}
(Recall that $ \alpha + 1 = \alpha \cup \{ \alpha \} $
was already defined.)
\begin { IEEEeqnarray*} { rClClr}
\beta & \cdot & 0 & \coloneqq & 0,\\
\beta & \cdot & (\alpha +1) & \coloneqq & \beta \cdot \alpha + \beta ,\\
\beta & \cdot & \lambda & \coloneqq & \sup _ { \alpha < \lambda } \beta \cdot \alpha & ~ ~\text { for limit ordinals $ \lambda $ }
\end { IEEEeqnarray*}
and
\begin { IEEEeqnarray*} { rClr}
\beta ^ 0 & \coloneqq & 1,\\
\beta ^ { \alpha +1} & \coloneqq & \beta ^ { \alpha } \cdot \beta ,\\
\beta ^ { \lambda } & \coloneqq & \sup _ { \alpha < \lambda } \beta ^ { \alpha } & ~ ~\text { for limit ordinals $ \lambda $ } .
\end { IEEEeqnarray*}
2024-02-13 02:00:58 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
\begin { example}
\leavevmode
\begin { itemize}
\item $ 2 + 2 = 4 $ ,
2024-02-13 02:00:58 +01:00
\item $ 196883 + 1 = 196884 $ ,
2023-11-27 16:07:23 +01:00
\item $ 1 + \omega = \sup _ { n < \omega } 1 + n = \omega \neq \omega + 1 $ ,
\item $ 2 \cdot \omega = \sup _ { n < \omega } 2 \cdot n = \omega $ ,
2024-02-13 02:00:58 +01:00
\item $ \omega \cdot 2 = \omega \cdot 1 + \omega = \omega + \omega $ .
2023-11-27 16:07:23 +01:00
\end { itemize}
\end { example}
2024-02-13 02:00:58 +01:00
} { }
2023-11-27 16:07:23 +01:00
2024-02-13 02:00:58 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
\begin { warning}
Cardinal arithmetic and ordinal arithmetic are very different!
The symbols are the same, but usually we will distinguish
between the two by the symbols used for variables
(i.e.~$ \alpha , \beta , \omega , \omega _ 1 $ are viewed primarily as ordinals
and $ \kappa , \lambda , \aleph _ \alpha $ as cardinals).
\end { warning}
We will very rarely use ordinal arithmetic.
2024-02-13 02:00:58 +01:00
} { }
2023-11-27 16:07:23 +01:00
\subsection { Cofinality}
\begin { definition}
Let $ \alpha $ , $ \beta $ be ordinals.
2023-11-30 15:54:02 +01:00
We say that $ f \colon \alpha \to \beta $ is \vocab { cofinal}
2024-02-11 02:43:20 +01:00
iff
\gist { %
for all $ \xi < \beta $ , there is some $ \eta < \alpha $
such that $ f ( \eta ) \ge \xi $ .%
} { %
\[
\forall \xi < \beta .~\exists \eta < \alpha .~f(\eta ) \ge \xi .
\]
}
2023-11-27 16:07:23 +01:00
\end { definition}
2024-02-11 02:43:20 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
\begin { remark}
If $ \beta $ is a limit ordinal,
this is equivalent to
\[
2024-02-11 02:43:20 +01:00
\forall \xi < \beta .~\exists \eta < \alpha .~f(\eta ) > \xi .
\]
2023-11-27 16:07:23 +01:00
\end { remark}
\begin { example}
\begin { enumerate} [(a)]
\item Look at $ \omega + \omega $ .
\begin { IEEEeqnarray*} { rCl}
f\colon \omega & \longrightarrow & \omega + \omega \\
n & \longmapsto & \omega + n
\end { IEEEeqnarray*}
is cofinal.
\item Look at $ \aleph _ \omega $ .
Then
\begin { IEEEeqnarray*} { rCl}
f\colon \omega & \longrightarrow & \aleph _ { \omega } \\
n & \longmapsto & \aleph _ n
\end { IEEEeqnarray*}
is cofinal.
\end { enumerate}
\end { example}
2024-02-11 02:43:20 +01:00
} { }
2023-11-27 16:07:23 +01:00
\begin { definition}
Let $ \beta $ be an ordinal.
The \vocab { cofinality} of $ \beta $ ,
denoted $ \cf ( \beta ) $ ,
is the least ordinal $ \alpha $
such that there exists a cofinal
$ f \colon \alpha \to \beta $ .
2024-02-11 02:43:20 +01:00
\end { definition}
2023-11-27 16:07:23 +01:00
\begin { example}
\begin { itemize}
\item $ \cf ( \aleph _ \omega ) = \omega $ .
In fact $ \cf ( \aleph _ { \lambda } ) \le \lambda $
2024-02-13 02:00:58 +01:00
for limit ordinals $ \lambda \neq 0 $
2023-11-27 16:07:23 +01:00
(consider $ \alpha \mapsto \aleph _ \alpha $ ).
\item $ \cf ( \aleph _ { \omega + \omega } ) = \omega $ .
\end { itemize}
\end { example}
\begin { lemma}
For any ordinal $ \beta $ ,
$ \cf ( \beta ) $ is a cardinal.
\end { lemma}
\begin { proof}
2024-02-13 02:00:58 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
Let $ f \colon \alpha \to \beta $ be cofinal.
Then $ \tilde { f } \colon | \alpha | \to \beta $ ,
the composition with $ \alpha \leftrightarrow | \alpha | $
is cofinal as well and $ | \alpha | \le \alpha $ .
2024-02-13 02:00:58 +01:00
} { Trivial.}
2023-11-27 16:07:23 +01:00
\end { proof}
2024-02-13 02:00:58 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
\begin { question}
How does one imagine ordinals with
cofinality $ > \omega $ ?
\end { question}
No idea.
2024-02-13 02:00:58 +01:00
} { }
2023-11-27 16:07:23 +01:00
\begin { definition}
2024-02-13 02:00:58 +01:00
An ordinal $ \beta $ is \vocab { regular}
2023-11-27 16:07:23 +01:00
iff $ \cf ( \beta ) = \beta $ .
Otherwise $ \beta $ is called \vocab { singular} .
\end { definition}
In particular, a regular ordinal is always a cardinal.
\begin { lemma}
Let $ \beta $ be an ordinal
Then $ \cf ( \beta ) $ is a regular cardinal,
i.e.
\[ \cf ( \cf ( \beta ) ) = \cf ( \beta ) . \]
\end { lemma}
\begin { proof}
Suppose not.
Let $ f \colon \cf ( \beta ) \to \beta $ be cofinal
and $ g \colon \cf ( \cf ( \beta ) ) \to \cf ( \beta ) $ .
Consider
\begin { IEEEeqnarray*} { rCl}
h\colon \cf (\cf (\beta )) & \longrightarrow & \beta \\
\eta & \longmapsto & \sup \{ f(\xi ): \xi \le g(\eta )\} < \beta .
\end { IEEEeqnarray*}
Clearly this is cofinal.
\end { proof}
\begin { warning}
2024-02-11 02:43:20 +01:00
Note that in general, a composition of cofinal maps
2023-11-27 16:07:23 +01:00
is not necessarily cofinal.
\end { warning}
\begin { theorem}
Let $ \kappa > \aleph _ 0 $ .
Then $ \kappa ^ + $ is regular.
\end { theorem}
\begin { proof}
Suppose that $ \cf ( \kappa ^ + ) < \kappa ^ + $ .
Then $ \cf ( \kappa ^ + ) \le \kappa $ ,
i.e.~there is a cofinal function $ f \colon \kappa \to \kappa ^ + $ .
By the axiom of choice,
there is a function $ g $ with domain $ \kappa $ ,
such that $ g ( \eta ) \colon \kappa \twoheadrightarrow f ( \eta ) $ is onto.
Now define
\begin { IEEEeqnarray*} { rCl}
h\colon \kappa \times \kappa & \longrightarrow & \kappa ^ + \\
(\eta , \xi ) & \longmapsto & g(\eta )(\xi ).
\end { IEEEeqnarray*}
Clearly this is surjective,
but $ | \kappa \times \kappa | < \kappa ^ + $ ,
by \yaref { thm:hessenberg} .
\end { proof}
2024-02-13 02:00:58 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
\begin { itemize}
\item $ \aleph _ 0 , \aleph _ 1 , \aleph _ 2 , \ldots $ are regular,
\item $ \aleph _ \omega $ is singular,
\item $ \aleph _ { \omega + 1 } , \aleph _ { \omega + 2 } , \ldots $ are regular,
\item $ \aleph _ { \omega + \omega } $ is singular,
\item $ \aleph _ { \omega + \omega + 1 } , \ldots $ are regular,
\item $ \aleph _ { \omega + \omega + \omega } $ is singular,
\item $ \ldots $
\item $ \aleph _ { \omega _ 1 } $ is singular,
\item $ \aleph _ { \omega _ 1 + 1 } , \ldots $ is regular,
\item $ \aleph _ { \omega _ 2 } $ is singular.
\end { itemize}
2024-02-13 02:00:58 +01:00
} { }
2023-11-27 16:07:23 +01:00
\begin { question} [Hausdorff]
Is there a regular limit cardinal?
\end { question}
2024-02-13 02:00:58 +01:00
Maybe. This is independent of $ \ZFC $ ,
cf.~\yaref { def:inaccessible} .
2023-11-27 16:07:23 +01:00
\begin { theorem} [Hausdorff]
\[
\aleph _ { \alpha +1} ^ { \aleph _ \beta } = \aleph _ \alpha ^ { \aleph _ \beta } \cdot \aleph _ { \alpha +1} .
\]
\end { theorem}
\begin { proof}
2024-02-13 02:00:58 +01:00
\gist { %
2023-11-27 16:07:23 +01:00
Recall that
\begin { IEEEeqnarray*} { rCl}
2024-02-13 02:00:58 +01:00
\aleph _ { \alpha +1} ^ { \aleph _ \beta } & =& |\leftindex ^ { \aleph _ \beta } \aleph _ { \alpha +1} |.
2023-11-27 16:07:23 +01:00
\end { IEEEeqnarray*}
\begin { itemize}
\item First case: $ \beta \ge \alpha + 1 $ .
2024-02-14 13:35:06 +01:00
Note that for all $ \gamma \le \beta $
we have
2023-11-27 16:07:23 +01:00
\[
2024-02-14 13:35:06 +01:00
\aleph _ { \gamma } ^ { \aleph _ \beta } \le \aleph _ \beta ^ { \aleph _ \beta }
\le \left ( 2^ { \aleph _ \beta } \right )^ { \aleph _ \beta }
= 2^ { \aleph _ \beta \cdot \aleph _ \beta } = 2^ { \aleph _ { \beta } }
\le \aleph _ \gamma ^ { \aleph _ \beta } .
2023-11-27 16:07:23 +01:00
\]
2024-02-14 13:35:06 +01:00
So in this case $ \aleph _ \alpha ^ { \aleph _ { \beta } } = 2 ^ { \aleph _ \beta } $
and $ \aleph _ { \alpha + 1 } ^ { \aleph _ \beta } = 2 ^ { \aleph _ { \beta } } $ .
Thus
2023-11-27 16:07:23 +01:00
\[
\aleph _ { \alpha +1} ^ { \aleph _ { \beta } } = 2^ { \aleph _ { \beta } }
= \aleph _ { \alpha } ^ { \aleph _ \beta } = \aleph _ { \alpha } ^ { \aleph _ \beta } \cdot \aleph _ { \alpha +1} .
\]
\item Second case:
Suppose $ \beta < \alpha + 1 $ .
By case hypothesis and because $ \aleph _ { \alpha + 1 } $
is regular,
no $ f \colon \aleph _ { \beta } \to \aleph _ { \alpha + 1 } $
is unbounded.
So
\[
2024-02-13 02:00:58 +01:00
\leftindex ^ { \aleph _ { \beta } } \aleph _ { \alpha +1} = \bigcup _ { \xi < \aleph _ { \alpha +1} } \leftindex ^ { \aleph _ \beta } \xi
2023-11-27 16:07:23 +01:00
\]
for each $ \xi < \aleph _ { \alpha + 1 } $ , $ | \xi | \le \aleph _ \alpha $ ,
hence
\[
2024-02-13 02:00:58 +01:00
|\leftindex ^ { \aleph _ { \beta } } \xi | \le \aleph _ \alpha ^ { \aleph _ \beta }
2023-11-27 16:07:23 +01:00
\]
for each $ \xi < \aleph _ { \alpha + 1 } $ .
Therefore, \[ \aleph _ { \alpha + 1 } ^ { \aleph _ \beta } \le \aleph _ { \alpha + 1 } \cdot \aleph _ { \alpha } ^ { \aleph _ { \beta } } \le \aleph _ { \alpha + 1 } ^ { \aleph _ \beta } . \]
\end { itemize}
2024-02-13 02:00:58 +01:00
} { %
$ \ge $ is trivial.
\begin { itemize}
\item First case: $ \beta \ge \alpha + 1 $ .
Note that $ \gamma \le \beta \implies \aleph _ { \gamma } ^ { \aleph _ \beta } = 2 ^ { \aleph _ \beta } $ ,
so
\[
\aleph _ { \alpha +1} ^ { \aleph _ \beta } \overset { \alpha +1 \le \beta } { =}
2^ { \aleph _ \beta }
\overset { \alpha < \beta } { =} \aleph _ \alpha ^ { \aleph _ \beta }
\le \aleph _ \alpha ^ { \aleph _ \beta } \cdot \aleph _ { \alpha +1} .
\]
\item Second case: $ \beta < \alpha + 1 $ :
\begin { itemize}
\item $ \aleph _ { \alpha + 1 } $ is regular, so all $ f \colon \aleph _ \beta \to \aleph _ { \alpha + 1 } $ are bounded.
\item Thus $ \leftindex ^ { \aleph _ \beta } \aleph _ { \alpha + 1 } = \bigcup _ { \xi < \aleph _ { \alpha + 1 } } \leftindex ^ { \aleph _ \beta } \xi $ for all $ \xi < \aleph _ { \alpha + 1 } $ .
\item So $ \aleph _ { \alpha + 1 } ^ { \aleph _ \beta } \le \aleph _ { \alpha + 1 } \aleph _ \alpha ^ { \aleph _ \beta } $ .
\end { itemize}
\end { itemize}
}
2023-11-27 16:07:23 +01:00
\end { proof}