2023-11-04 23:28:39 +01:00
\lecture { 04} { } { ZFC}
% Model-theoretic concepts and ultraproducts
2024-02-13 02:00:58 +01:00
\section { \texorpdfstring { $ \ZFC $ } { ZFC} }
2023-11-04 23:28:39 +01:00
% 1900, Russel's paradox
2024-02-14 23:19:23 +01:00
% \todo{Russel's Paradox}
2023-11-04 23:28:39 +01:00
$ \ZFC $ stands for
\begin { itemize}
\item \textsc { Zermelo} ’ s axioms (1905), % crises around 19000
2023-11-13 19:42:48 +01:00
\item \textsc { Fraenkel} 's axioms,
2023-11-13 20:28:21 +01:00
\item the \yaref { ax:c} .
2023-11-04 23:28:39 +01:00
\end { itemize}
2024-02-15 04:44:48 +01:00
\gist {
2023-11-04 23:28:39 +01:00
\begin { notation}
We write $ x \subseteq y $ as a shorthand
for $ \forall z.~ ( z \in x \implies z \in y ) $ .
We write $ x = \emptyset $ for $ \lnot \exists y . y \in x $
and $ x \cap y = \emptyset $ for $ \lnot \exists z . ~ ( z \in x \land z \in y ) $ .
We use $ x = \{ y,z \} $
for
\[
y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z).
\]
2023-12-03 02:50:36 +01:00
We write $ z = x \cap y $ for
\[ \forall u.~ ( ( u \in z ) \implies u \in x \land u \in y ) , \]
$ z = x \cup y $ for
\[
\forall u.~((u \in z) \iff (u \in x \lor u \in y)),
\]
$ z = \bigcap x $ for
\[
\forall u.~((u \in z) \iff (\forall v.~(v \in x \implies u \in v))),
\]
$ z = \bigcup x $ for
\[
\forall u.~((u \in z) \iff \exists v.~(v \in x \land u \in v))
\]
and
$ z = x \setminus y $ for
2023-11-04 23:28:39 +01:00
\[
2023-12-03 02:50:36 +01:00
\forall u.~((u \in z) \iff (u \in x \land u \not \in y)).
2023-11-13 20:21:51 +01:00
\]
2023-11-04 23:28:39 +01:00
\end { notation}
2024-02-15 04:44:48 +01:00
} { Trivial, boring notation.}
2023-11-04 23:28:39 +01:00
$ \ZFC $ consists of the following axioms:
\begin { axiom} [\vocab { Extensionality} ]
2023-11-13 20:21:51 +01:00
\yalabel { Axiom of Extensionality} { (Ext)} { ax:ext} % (AoE)
2023-11-04 23:28:39 +01:00
\[
\forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)).
\]
Equivalent statements using $ \subseteq $ :
\[
\forall x.~\forall y.~(x = y \iff (x \subseteq y \land y \subseteq x)).
\]
\end { axiom}
\begin { axiom} [\vocab { Foundation} ]
2023-11-13 15:50:08 +01:00
\yalabel { Axiom of Foundation} { (Fund)} { ax:fund}
2023-11-04 23:28:39 +01:00
Every set has an $ \in $ -minimal member:
\[
\forall x .~ \left (\exists a .~(a\in x) \implies
\exists y .~ y \in x \land \lnot \exists z.~(z \in y \land z \in x)\right ).
\]
Shorter:
\[
\forall x.~(x \neq \emptyset \implies \exists y \in x .~ x \cap y = \emptyset ).
\]
\end { axiom}
\begin { axiom} [\vocab { Pairing} ]
2023-11-13 20:21:51 +01:00
\yalabel { Axiom of Pairing} { (Pair)} { ax:pair} % AoP
2023-11-04 23:28:39 +01:00
\[
\forall x .~\forall y.~ \exists z.~(z = \{ x,y\} ).
\]
\end { axiom}
\begin { remark}
Together with the axiom of pairing,
the axiom of foundation implies
that there can not be a set $ x $ such that
$ x \in x $ :
Suppose that $ x \in x $ .
Then $ x $ is the only element of $ \{ x \} $ ,
but $ x \cap \{ x \} \neq \emptyset $ .
A similar argument shows that chains like
$ x _ 0 \in x _ 1 \in x _ 2 \in x _ 0 $
are ruled out as well.
\end { remark}
\begin { axiom} [\vocab { Union} ]
2023-11-13 20:21:51 +01:00
\yalabel { Axiom of Union} { (Union)} { ax:union} % Union (AoU)
2023-11-04 23:28:39 +01:00
\[
\forall x.~\exists y.~(y = \bigcup x).
\]
\end { axiom}
2023-11-13 20:21:51 +01:00
\begin { axiom} [\vocab { Power Set} ]
\yalabel { Axiom of Power Set} { (Pow)} { ax:pow}
% (PWA)
2023-11-04 23:28:39 +01:00
We write $ x = \cP ( y ) $
for
2023-12-03 02:50:36 +01:00
$ \forall z.~ ( z \in x \iff z \subseteq x ) $ .
2023-11-13 20:21:51 +01:00
The power set axiom states
2023-11-04 23:28:39 +01:00
\[
\forall x.~\exists y.~y=\cP (x).
\]
\end { axiom}
\begin { axiom} [\vocab { Infinity} ]
2023-11-13 15:50:08 +01:00
\yalabel { Axiom of Infinity} { (Inf)} { ax:inf}
2023-11-04 23:28:39 +01:00
A set $ x $ is called \vocab { inductive} ,
iff $ \emptyset \in x \land \forall y.~ ( y \in x \implies y \cup \{ y \} \in x ) $ .
The axiom of infinity says that there exists and inductive set.
\end { axiom}
2023-11-05 00:50:26 +01:00
\begin { axiomschema} [\vocab { Separation} ]
2023-11-13 20:21:51 +01:00
\yalabel { Axiom of Separation} { (Aus)} { ax:aus}
2023-11-04 23:28:39 +01:00
Let $ \phi $ be some fixed
2023-12-03 02:50:36 +01:00
fist order formula in $ \cL _ \in $
with free variables $ x, v _ 1 , \ldots , v _ p $ .
Let $ b $ be a variable that is not free in $ \phi $ .
2023-11-13 20:21:51 +01:00
Then $ \AxAus _ { \phi } $
2023-11-04 23:28:39 +01:00
states
\[
\forall v_ 1 .~\forall v_ p .~\forall a .~\exists b .~\forall x.~
(x \in b \implies x \in a \land \phi (x,v_ 1,v_ p))
\]
Let us write $ b = \{ x \in a | \phi ( x ) \} $
for $ \forall x.~ ( x \in b \iff x \in a \land f ( x ) ) $ .
2023-11-13 20:21:51 +01:00
Then \AxAus can be formulated as
2023-11-04 23:28:39 +01:00
\[
2023-12-03 02:50:36 +01:00
\forall a.~\exists b.~(b = \{ x \in a | \phi (x)\} ).
2023-11-04 23:28:39 +01:00
\]
2023-11-05 00:50:26 +01:00
\end { axiomschema}
2023-11-04 23:28:39 +01:00
2023-12-03 02:50:36 +01:00
2023-11-04 23:28:39 +01:00
\begin { remark}
2023-11-13 20:21:51 +01:00
\AxAus proves that
2023-11-04 23:28:39 +01:00
\begin { itemize}
\item $ \forall a.~ \forall b.~ \exists c.~ ( c = a \cap b ) $ ,
\item $ \forall a.~ \forall b.~ \exists c.~ ( c = a \setminus b ) $ ,
\item $ \forall a.~ \exists b.~ ( b = \bigcap a ) $ .
\end { itemize}
\end { remark}
2023-11-05 00:50:26 +01:00
\begin { axiomschema} [\vocab { Replacement} (Fraenkel)]
2023-11-13 20:21:51 +01:00
\yalabel { Axiom of Replacement} { (Rep)} { ax:rep}
2023-12-03 02:50:36 +01:00
Let $ \phi $ be some $ \cL _ { \in } $ formula
2024-02-15 04:44:48 +01:00
with free variables $ x, y $ .
2023-11-04 23:28:39 +01:00
Then
2024-02-15 04:44:48 +01:00
\begin { IEEEeqnarray*} { l}
\forall v_ 1 \ldots \forall v_ p.~\\
\left [\left( \forall x \exists! y.~\phi(x,y,\overline{v})\right) \to \forall a .~\exists b .~\forall y.~(y \in b \leftrightarrow \exists x (x \in a \land \phi(x,y, \overline{v}))\right]
\end { IEEEeqnarray*}
%\forall x \in a.~\exists !y \phi(x,y) \implies \exists b.~\forall x \in a.~\exists y \in b.~\phi(x,y).
2023-12-03 02:50:36 +01:00
% \forall v_1 \ldots \forall v_p .~\forall x.~ \exists y'.~\forall y.~(y = y' \iff \phi(x))
% \implies \forall a.~\exists b.~\forall y.~(y \in b \iff \exists x.~(x \in a \land \phi(x))
2023-11-05 00:50:26 +01:00
\end { axiomschema}
2023-11-04 23:28:39 +01:00
\begin { axiom} [\vocab { Choice} ]
2023-11-13 20:21:51 +01:00
\yalabel { Axiom of Choice} { (C)} { ax:c}
2023-12-03 02:50:36 +01:00
Every family of pairwise disjoint non-empty sets has a \vocab { choice set} :
2023-11-05 00:50:26 +01:00
\begin { IEEEeqnarray*} { rCl}
\forall x .~& (& \\
2023-12-03 02:50:36 +01:00
& & ((\forall y \in x.~y \neq \emptyset ) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset )))\\
2023-11-05 00:50:26 +01:00
& & \implies \exists z.~\forall y \in x.~\exists u.~(z \cap y = \{ u\} )\\
& )&
\end { IEEEeqnarray*}
2023-11-04 23:28:39 +01:00
\end { axiom}