41 lines
1.1 KiB
TeX
41 lines
1.1 KiB
TeX
|
\lecture{10}{}{} % Mirko
|
||
|
|
||
|
Applications of induction and recursion:
|
||
|
\begin{fact}
|
||
|
For every set $x$ there is a transitive set $t$
|
||
|
such that $x \in t$.
|
||
|
\end{fact}
|
||
|
\begin{proof}
|
||
|
Take $R = \in $.
|
||
|
We want a function $F$ with domain $\omega$
|
||
|
such that $F(0) = \{x\}$
|
||
|
and $F(n+1) = \bigcup F(n)$.
|
||
|
Once we have such a function,
|
||
|
$\{x\} \cup \bigcup \ran(F)$
|
||
|
is a set as desired.
|
||
|
|
||
|
\todo{insert formal application of recursion theorem}
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{notation}
|
||
|
Let $\OR$ denote the class of all ordinals
|
||
|
and $V$ the class of all sets.
|
||
|
\end{notation}
|
||
|
\begin{lemma}
|
||
|
There is a function $F\colon \OR \to V$
|
||
|
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
|
||
|
\end{lemma}
|
||
|
\begin{proof}
|
||
|
\todo{TODO}
|
||
|
\end{proof}
|
||
|
\begin{notation}
|
||
|
Usually, one write $V_\alpha$ for $F(\alpha)$.
|
||
|
They are called the \vocab{rank initial segments} of $V$.
|
||
|
\end{notation}
|
||
|
\begin{lemma}
|
||
|
If $x$ is any set, then there is some $\alpha \in \OR$
|
||
|
such that $x \in V_\alpha$,
|
||
|
i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$.
|
||
|
\end{lemma}
|
||
|
|