lecture 11

This commit is contained in:
Josia Pietsch 2023-11-23 15:38:28 +01:00
parent 6936663173
commit 4fc85f8473
Signed by: josia
GPG Key ID: E70B571D66986A2D
2 changed files with 235 additions and 0 deletions

40
inputs/lecture_10.tex Normal file
View File

@ -0,0 +1,40 @@
\lecture{10}{}{} % Mirko
Applications of induction and recursion:
\begin{fact}
For every set $x$ there is a transitive set $t$
such that $x \in t$.
\end{fact}
\begin{proof}
Take $R = \in $.
We want a function $F$ with domain $\omega$
such that $F(0) = \{x\}$
and $F(n+1) = \bigcup F(n)$.
Once we have such a function,
$\{x\} \cup \bigcup \ran(F)$
is a set as desired.
\todo{insert formal application of recursion theorem}
\end{proof}
\begin{notation}
Let $\OR$ denote the class of all ordinals
and $V$ the class of all sets.
\end{notation}
\begin{lemma}
There is a function $F\colon \OR \to V$
such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.
\end{lemma}
\begin{proof}
\todo{TODO}
\end{proof}
\begin{notation}
Usually, one write $V_\alpha$ for $F(\alpha)$.
They are called the \vocab{rank initial segments} of $V$.
\end{notation}
\begin{lemma}
If $x$ is any set, then there is some $\alpha \in \OR$
such that $x \in V_\alpha$,
i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$.
\end{lemma}

195
inputs/lecture_11.tex Normal file
View File

@ -0,0 +1,195 @@
\lecture{11}{2023-11-23}{Cardinals}
\subsection{Cardinals}
Consequence of the Mostowski collapse:
If $<$ is a well-order on a set $a$
then there is some transitive $b$
with $(b, \in\defon{b}) \cong (a, <)$.
\begin{definition}
Let $a$ be any set.
The \vocab{cardinality} of $a$
denoted by $\overline{\overline{a}}$, $|a|$ or $\card(a)$,
is the smallest ordinal $\alpha$
such that there is some bijection $f\colon \alpha \to a$.
An ordinal $\alpha$ is called a \vocab{cardinal},
iff there is some set $a$ with $|a| = \alpha$
(equivalently, $|\alpha| = \alpha$).
\end{definition}
We often write $\kappa, \lambda, \ldots$ for cardinals.
\begin{lemma}
For every cardinal $\kappa$,
there is come cardinal $\lambda > \kappa$.
\end{lemma}
\begin{proof}
Consider the powerset of $\kappa$.
We know that there is no surjection $\kappa \twoheadrightarrow \cP(\kappa)$.
Hence $\kappa < |2^{\kappa}|$.
\end{proof}
\begin{definition}
For each cardinal $\kappa$,
$\kappa^+$ denotes the least cardinal $\lambda > \kappa$.
\end{definition}
\begin{warning}
This has nothing to do with the ordinal successor of $\kappa$.
\end{warning}
\begin{lemma}
Let $X$ be any set of cardinals.
Then $\sup X$ is a cardinal.
\end{lemma}
\begin{proof}
If there is some $\kappa \in X$ with $\lambda \le \kappa$
for all $\lambda \in X$,
then $\kappa = \sup(X)$ is a cardinal.
Let us now assume that for all $\kappa \in X$
there is some $\lambda \in X$
with $\lambda > \kappa$.
Suppose that $\sup(X)$ is no a cardinal
and write $\mu = |\sup(X)|$.
Then $\mu \in \sup(X)$,
since $\sup(X)$ is an ordinal.
However $\sup(X)$ is the least ordinal
larger than all $\alpha \in X$,
so there is $\lambda \in X$
with $\lambda > \mu$.
However, there exists $\mu \twoheadrightarrow \sup(X)$,
hence also $\mu \twoheadrightarrow \lambda$
(which is in contradiction to $\lambda$ being a cardinal).
\end{proof}
We may now use the recursion theorem
to define a sequence $\langle \aleph_\alpha : \alpha \in \OR \rangle$
with the following properties:
\begin{IEEEeqnarray*}{rCl}
\aleph_0 &=& \omega,\\
\aleph_{\alpha+1} &=& (\aleph_\alpha)^+,\\
\aleph_{\lambda} &=& \sup \{\aleph_\alpha : \alpha < \lambda\}.
\end{IEEEeqnarray*}
Each $\aleph_\alpha$ is a cardinal.
Also, a trivial induction show that $\alpha \le \aleph_\alpha$.
In particular $|\alpha| \le \aleph_{\alpha}$.
Therefore the $\aleph_\alpha$ are all the infinite cardinals:
If $a$ is any infinite set, then $|a| \le \aleph_{|a|}$,
so $|a| = \aleph_\beta$ for some $\beta \le |\alpha|$.
\begin{notation}
Sometimes we write $\omega_\alpha$ for $\aleph_\alpha$
(when viewing it as an ordinal).
\end{notation}
\begin{notation}
Let ${}^a b \coloneqq \{f : f \text{ is a function}, \dom(f) = \alpha, \ran(f) \subseteq b\}$.
\end{notation}
\begin{definition}[Cardinal arithmetic]
Let $\kappa$, $\lambda$ be cardinals.
Define
\begin{IEEEeqnarray*}{rCl}
\kappa + \lambda &\coloneqq & |\{0\} \times \kappa \cup \{1\} \times \lambda|,\\
\kappa \cdot \lambda &\coloneqq & |\kappa \times \lambda|,\\
\kappa^{\lambda} &\coloneqq & |{}^{\lambda}\kappa|.
\end{IEEEeqnarray*}
\end{definition}
\begin{warning}
This is very different from ordinal arithmetic!
\end{warning}
\begin{theorem}[Hessenberg]
\label{thm:hessenberg}
For all $\alpha$ we have
\[
\aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha.
\]
\end{theorem}
\begin{corollary}
For all $\alpha, \beta$ it is
\[
\aleph_\alpha + \aleph_\beta = \aleph_\alpha \cdot \aleph_\beta = \max \{\aleph_\alpha, \aleph_\beta\}.
\]
\end{corollary}
\begin{proof}
Wlog.~$\alpha \le \beta$.
Trivially $\aleph_\alpha \le \aleph_\beta$.
It is also clear that
\[
\aleph_{\beta} \le \aleph_\alpha + \aleph_{\beta} \le \aleph_\alpha \cdot \aleph_\beta \le \aleph_\beta \cdot \aleph_\beta = \aleph_\beta.
\]
\end{proof}
\begin{refproof}{thm:hessenberg}
Define a well-order $<^\ast$ on $\OR \times \OR$ by setting
\[
(\alpha,\beta) <^\ast (\gamma,\delta)
\]
iff
\begin{itemize}
\item $\max(\alpha,\beta) < \max(\gamma,\delta)$ or
\item $\max(\alpha,\beta) = \max(\gamma,\delta)$ and $\alpha < \gamma$ or
\item $\max(\alpha,\beta) = \max(\gamma,\delta)$ and $\alpha = \gamma$ and $\beta < \delta$.
\end{itemize}
It is clear that this is a well-order.
There is an isomorphism
\[
(\OR, <) \cong^{\Gamma^{-1}} (\OR \times \OR, <^\ast).
\]
$\Gamma$ is called the \vocab{Gödel pairing function}.
\begin{claim}
For all $\alpha$ it is
$\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha})) = \aleph_\alpha$,
i.e.
\[
\aleph_\alpha = \{\xi: \exists \eta, \eta' < \aleph_\alpha.~\xi = \Gamma((\eta,\eta'))\}.
\]
\end{claim}
\begin{subproof}
We use induction of $\alpha$.
The claim is trivial for $\alpha = 0$.
Now let $\alpha > 0$ and suppose the claim
to be true for all $\beta < \alpha$.
It is easy to see that
\[
\ran(\Gamma\defon{\aleph_\alpha \times \aleph_\alpha}) \supseteq \aleph_\alpha,
\]
as otherwise $\Gamma\defon{\aleph_\alpha \times \alepha_\alpha}: \alepha_{\alpha} \times \alepha_\alpha \to \eta$
would be a bijection for some $\eta < \alepha_\alpha$,
but $\alepha_\alpha$ is a cardinal.
Suppose that $\ran(\Gamma\defon{\aleph_\alpha \times \alepha_\alpha}) \supsetneq \aleph_\alpha$.
Then there exist $\eta, \eta' < \aleph_\alpha$ with
\[
\Gamma((\eta, \eta')) = \alepha_\alpha.
\]
So $\Gamma\defon{\{(\gamma,\delta) : (\gamma,\delta) <^\ast (\eta, \eta'\}}$
is bijective onto $\alepha_\alpha$.
If $(\gamma,\delta) <^\ast (\eta, \eta')$,
then $\max \{\gamma,\delta\} \le \max \{\eta, \eta'\}$.
Say $\eta \le \eta' < \alepha_\alpha$
and let $\aleph_\alpha = |\eta'|$.
There is a surjection
\[f\colon \underbrace{(\eta +1)}_{ \le \aleph_\beta} \times \underbrace{(\eta' + 1)}_{\sim \aleph_\beta} \twoheadrightarrow \aleph_\alpha.\]
This gives rise to a surjection $f^\ast \colon \aleph_\beta \times \aleph_\beta \to \aleph_\alpha$.
The inductive hypothesis then produces a surjection
$f^\ast\colon \aleph_\beta \to \aleph_\alpha \lightning$.
\end{subproof}
\end{refproof}
However, exponentiation of cardinals is far from trivial:
\begin{observe}
$2^{\kappa} = |\cP(\kappa)|$,
since ${}^{\kappa} \{0,1\} \leftrightarrow\cP(\kappa)$.
Hence by Cantor $2^{\kappa}\ge \kappa^+$.
\end{observe}
This is basically all we can say.
The \vocab{continuum hypothesis} states that $2^{\aleph_0} = \aleph_1$.