2023-12-04 15:46:30 +01:00
|
|
|
\lecture{14}{2023-12-04}{}
|
2024-02-13 02:00:58 +01:00
|
|
|
\gist{%
|
2023-12-04 15:46:30 +01:00
|
|
|
\begin{abuse}
|
|
|
|
Sometimes we say club
|
|
|
|
instead of club in $\kappa$.
|
|
|
|
\end{abuse}
|
|
|
|
\begin{example}
|
|
|
|
Let $\kappa$ be a regular uncountable cardinal.
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
\item $\kappa$ is a club in $\kappa$.
|
|
|
|
\item $\{\xi + 1 : \xi < \kappa\}$ is unbounded in $\kappa$,
|
|
|
|
but not closed.
|
|
|
|
\item For each $\alpha < \kappa$,
|
|
|
|
the set $\alpha + 1 = \{\xi : \xi \le \alpha\}$
|
|
|
|
is closed but not unbounded in $\kappa$.
|
|
|
|
\item $\{\xi < \kappa : \xi \text{ is a limit ordinal}\} $
|
|
|
|
is club in $\kappa$.
|
|
|
|
\end{itemize}
|
|
|
|
\end{example}
|
2024-02-13 02:00:58 +01:00
|
|
|
}{}
|
2023-12-04 15:46:30 +01:00
|
|
|
\begin{lemma}
|
|
|
|
\label{lem:clubintersection}
|
|
|
|
Let $\kappa$ be regular and uncountable.
|
|
|
|
Let $\alpha < \kappa$
|
|
|
|
and let $\langle C_{\beta} : \beta < \alpha \rangle$
|
|
|
|
be a sequence of subsets of $\kappa$ which are all club in $\kappa$.
|
|
|
|
Then
|
|
|
|
\[
|
|
|
|
\bigcap_{\beta < \alpha} C_{\beta}
|
|
|
|
\]
|
|
|
|
is club in $\kappa$.
|
|
|
|
\end{lemma}
|
|
|
|
\begin{warning}
|
|
|
|
This is false for $\alpha = \kappa$:
|
|
|
|
Let $C_{\beta} \coloneqq \{\xi : \xi > \beta\}$.
|
|
|
|
Clearly this is club
|
|
|
|
but $\bigcap_{\beta < \kappa} C_\beta = \emptyset$.
|
|
|
|
\end{warning}
|
|
|
|
\begin{refproof}{lem:clubintersection}
|
2024-02-13 02:00:58 +01:00
|
|
|
\gist{%
|
2023-12-04 15:46:30 +01:00
|
|
|
First let $\alpha = 2$.
|
|
|
|
Let $C, D \subseteq \kappa$
|
2024-02-13 02:00:58 +01:00
|
|
|
be club.
|
2023-12-04 15:46:30 +01:00
|
|
|
$C \cap D$ is trivially closed:
|
|
|
|
|
|
|
|
Let $\beta < \kappa$. Suppose that $(C \cap D) \cap \beta$
|
|
|
|
is unbounded in $\beta$, so $C \cap \beta$ and $D \cap \beta$
|
|
|
|
are both unbounded in $\beta$,
|
|
|
|
so $\beta \in C \cap D$.
|
|
|
|
|
|
|
|
|
|
|
|
$C \cap D$ is unbounded:
|
|
|
|
|
|
|
|
Take some $\gamma < \kappa$.
|
|
|
|
Let $\gamma_0 = \gamma$
|
|
|
|
and inductively define $\gamma_n$ :
|
|
|
|
If $n$ is even, let $\gamma_n \coloneqq \min C \setminus (\gamma_{n-1}+1)$,
|
|
|
|
otherwise $\gamma_n \coloneqq \min D \setminus (\gamma_{n-1}+1)$.
|
|
|
|
|
|
|
|
Let $\xi = \sup \{\gamma_n : n < \omega\}$.
|
|
|
|
Then $\xi = \sup \{\gamma_{2n + 2} : n < \omega\} \in D$
|
|
|
|
and $\xi \in C$ by the same argument,
|
|
|
|
so $\xi \in C \cap D$
|
|
|
|
(here it is important, that $\cf(\kappa) > \omega$)
|
|
|
|
and $\xi > \gamma$.
|
|
|
|
|
|
|
|
The case $\alpha > 2$ is similar:
|
|
|
|
The intersection is closed by exactly the same argument.%
|
|
|
|
\footnote{``It is even more closed.''}
|
|
|
|
|
|
|
|
Let's prove that $\bigcap \{C_{\beta} : \beta < \alpha\}$
|
|
|
|
is unbounded in $\kappa$.
|
|
|
|
|
|
|
|
We will define a sequence $\langle \gamma_i : i \le \alpha \cdot \omega \rangle$%
|
|
|
|
\footnote{Ordinal multiplication, i.e.~$\alpha \cdot \omega = \sup_{n < \omega} \underbrace{\alpha + \ldots + \alpha}_{n \text{ times}}$.}
|
|
|
|
as follows:
|
|
|
|
|
|
|
|
Let $\gamma_0 \coloneqq \gamma$.
|
|
|
|
Choose
|
|
|
|
\[\gamma_{\alpha \cdot n + \beta + 1} = \min C_{\beta} \setminus (\gamma_{\alpha \cdot n + \beta} + 1)\]
|
|
|
|
and at limits choose the supremum.
|
|
|
|
|
|
|
|
|
|
|
|
Let $\xi = \sup_{i < \alpha \cdot \omega} \gamma_i
|
|
|
|
= \sup_{i < \omega} \gamma_{\alpha \cdot n + \beta + 1} \in \bigcap_{\beta < \alpha} C_\beta$,
|
|
|
|
where we have used that.
|
|
|
|
$\cf(\kappa) > \alpha \cdot \omega$.
|
2024-02-13 02:00:58 +01:00
|
|
|
}{%
|
|
|
|
\begin{itemize}
|
|
|
|
\item Trivially closed.
|
|
|
|
\item Recursively define $\langle \gamma_i : i \le \alpha \cdot \omega \rangle$, by
|
|
|
|
$\gamma_0 \coloneqq \gamma$,
|
|
|
|
\[\gamma_{\alpha \cdot n + \beta + 1} = \min C_{\beta} \setminus (\gamma_{\alpha \cdot n + \beta} + 1)\]
|
|
|
|
and $\sup$ at limits.
|
|
|
|
\item Then $\sup_{i < \alpha\cdot \omega} \gamma_i \in \bigcap_{\beta < \alpha} C_\beta$
|
|
|
|
(we used $\cf(\kappa) > \alpha\cdot \omega$).
|
|
|
|
\end{itemize}
|
|
|
|
}
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{refproof}
|
|
|
|
|
|
|
|
\begin{definition}
|
2024-02-13 02:00:58 +01:00
|
|
|
$F \subseteq \cP(a)$ is a \vocab{filter}
|
2023-12-04 15:46:30 +01:00
|
|
|
iff
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
\item $X,Y \in F \implies X \cap Y \in F$,
|
|
|
|
\item $X \in F \land X \subseteq Y \subseteq \kappa \implies Y \in F$,
|
2023-12-11 15:45:36 +01:00
|
|
|
\item $\emptyset \not\in F$,\footnote{Some authors don't
|
|
|
|
require $\emptyset \not\in F$,
|
|
|
|
but that is a degenerate case anyway,
|
|
|
|
since $\emptyset \in F \iff F = \cP(a)$.}
|
|
|
|
$\kappa \in F$.
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
|
|
|
|
Let $\alpha \le \kappa$.
|
|
|
|
We call $F$ \vocab{$< \alpha$-closed}
|
|
|
|
iff for all $\gamma < \alpha$ and $\{X_\beta : \beta < \gamma\} \subseteq F$
|
|
|
|
then $\bigcap \{X_\beta : \beta < \gamma\} \in F$.
|
|
|
|
\end{definition}
|
2024-02-13 02:00:58 +01:00
|
|
|
\gist{%
|
2023-12-04 15:46:30 +01:00
|
|
|
Intuitively, a filter is a collection of ``big'' subsets of $a$.
|
2024-02-13 02:00:58 +01:00
|
|
|
}{}
|
2023-12-04 15:46:30 +01:00
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $\kappa$ be regular and uncountable.
|
|
|
|
The \vocab{club filter} is defined as
|
|
|
|
\[
|
|
|
|
\cF_{\kappa} \coloneqq \{X \subseteq \kappa : \exists \text{ club } C \subseteq \kappa .~ C \subseteq X\}.
|
2024-02-13 02:00:58 +01:00
|
|
|
\]
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{definition}
|
|
|
|
Clearly this is a filter.
|
|
|
|
|
|
|
|
We have shown (assuming \AxC to choose contained clubs):
|
|
|
|
\begin{theorem}
|
|
|
|
If $\kappa$ is regular and uncountable.
|
|
|
|
Then $\cF_\kappa$ is a $< \kappa$-closed filter.
|
|
|
|
\end{theorem}
|
2024-01-17 11:51:59 +01:00
|
|
|
\begin{proof}
|
|
|
|
Clearly $\emptyset \not\in \cF_\kappa$,
|
|
|
|
$\kappa \in \cF_\kappa$,
|
|
|
|
and $A \in \cF_{\kappa}, A \subseteq B \in \kappa \implies B \in \cF_\kappa$.
|
2024-02-13 02:00:58 +01:00
|
|
|
In \autoref{lem:clubintersection} showed that the intersection
|
2024-01-17 11:51:59 +01:00
|
|
|
of $< \kappa$ many clubs is club.
|
|
|
|
\end{proof}
|
2023-12-04 15:46:30 +01:00
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $\langle A_\beta : \beta < \alpha \rangle$
|
|
|
|
be a sequence of sets.
|
|
|
|
The \vocab{diagonal intersection},
|
|
|
|
is defined to be
|
|
|
|
\[
|
|
|
|
\diagi_{\beta < \alpha} A_{\beta} \coloneqq
|
2024-02-14 02:06:55 +01:00
|
|
|
\{\xi < \alpha : \xi \in \bigcap \{A_{\beta} : \beta < \xi\} \}
|
|
|
|
= \bigcap_{\beta < \alpha} ([0,\beta] \cup A_\beta)
|
2024-02-13 02:00:58 +01:00
|
|
|
\]
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{definition}
|
|
|
|
\begin{lemma}
|
2023-12-07 15:54:40 +01:00
|
|
|
\label{lem:diagiclub}
|
2023-12-04 15:46:30 +01:00
|
|
|
Let $\kappa$ be a regular, uncountable cardinal.
|
|
|
|
If $\langle C_{\beta} : \beta < \kappa \rangle$
|
|
|
|
is a sequence of club subsets of $\kappa$,
|
|
|
|
then $\diagi_{\beta < \kappa} C_{\beta}$
|
2024-02-13 02:00:58 +01:00
|
|
|
contains a club.
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{lemma}
|
2024-02-13 02:00:58 +01:00
|
|
|
\begin{refproof}{lem:diagiclub}
|
|
|
|
% TODO THINK
|
|
|
|
\gist{
|
2023-12-04 15:46:30 +01:00
|
|
|
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
|
|
|
|
Write $D_{\beta} \coloneqq \bigcap \{C_{\gamma} : \gamma \le \beta\} $
|
|
|
|
for $\beta < \kappa$.
|
|
|
|
Each $D_{\beta}$ is a club,
|
|
|
|
$D_{\beta} \subseteq C_{\beta}$
|
|
|
|
and $D_{\beta} \supseteq D_{\beta'}$
|
|
|
|
for $\beta \le \beta' < \kappa$.
|
|
|
|
|
|
|
|
It suffices to show that $\diagi_{\beta < \kappa} D_{\beta}$
|
|
|
|
contains a club.
|
|
|
|
|
|
|
|
\begin{claim}
|
|
|
|
$\diagi_{\beta < \kappa} D_{\beta}$ is closed in $\kappa$.
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
Let $\gamma < \kappa$ be such that $\left( \diagi_{\beta < \kappa} D_{\beta} \right) \cap \gamma$
|
|
|
|
is unbounded in $\gamma$.
|
|
|
|
We aim to show that $\gamma \in \diagi_{\beta < \kappa} D_{\beta}$.
|
|
|
|
Let $\beta_0 < \gamma$.
|
2024-01-16 00:06:50 +01:00
|
|
|
We need to see that $\gamma \in D_{\beta_0}$.
|
2024-01-16 00:10:27 +01:00
|
|
|
|
2024-01-16 00:06:50 +01:00
|
|
|
For each $\beta_0 \le \beta' < \gamma$
|
2023-12-04 15:46:30 +01:00
|
|
|
there is some $\beta'' \in \diagi_{\beta < \kappa} D_\beta$
|
2024-01-16 00:06:50 +01:00
|
|
|
such that $\beta' \le \beta'' < \gamma$,
|
|
|
|
since $\gamma = \sup((\diagi_{\beta < \kappa} D_\beta) \cap \gamma)$.
|
2023-12-04 15:46:30 +01:00
|
|
|
In particular $\beta'' \in D_{\beta_0}$.
|
|
|
|
|
2024-01-16 00:10:27 +01:00
|
|
|
So $D_{\beta_0} \cap \gamma$
|
|
|
|
is unbounded in $\gamma$.
|
|
|
|
Since $D_{\beta_0}$ is closed
|
|
|
|
it follows that $\gamma \in D_{\beta_0}$.
|
2023-12-04 15:46:30 +01:00
|
|
|
|
2024-01-16 00:06:50 +01:00
|
|
|
%As $\beta_0 < \gamma$ was arbitrary,
|
|
|
|
%this shows that $\gamma \in \diagi_{\beta < n} D_\beta$.
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{subproof}
|
|
|
|
|
|
|
|
\begin{claim}
|
|
|
|
$\diagi_{\beta < \kappa} D_{\beta}$
|
|
|
|
is unbounded in $\kappa$.
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
Fix $\gamma < \kappa$.
|
|
|
|
We need to find $\delta > \gamma$
|
2024-02-13 02:00:58 +01:00
|
|
|
with $\delta \in \diagi_{\beta < \kappa} D_\beta$.
|
2023-12-04 15:46:30 +01:00
|
|
|
|
|
|
|
Define $\langle \gamma_n : n < \omega \rangle$
|
|
|
|
as follows:
|
|
|
|
$\gamma_0 \coloneqq \gamma$
|
|
|
|
and
|
|
|
|
\[
|
|
|
|
\gamma_{n+1} \coloneqq \min D_{\gamma_n} \setminus (\gamma_n + 1)
|
|
|
|
\]
|
|
|
|
|
|
|
|
We have $\delta \coloneqq \sup_{n < \omega} \gamma_n \in \kappa$
|
|
|
|
by cofinality of $\kappa$.
|
|
|
|
|
|
|
|
We need to show that $\delta \in D_{\overline{\gamma}}$
|
|
|
|
for all $\overline{\gamma} < \delta$.
|
|
|
|
|
|
|
|
If $\overline{\gamma} < \delta$, then $\overline{\gamma} \le \gamma_n$
|
|
|
|
for some $n < \omega$.
|
|
|
|
For $m \ge n$, $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_{\overline{\gamma}}$.
|
|
|
|
So $D_{\overline{\gamma}} \cap \delta$ is unbounded
|
2024-02-13 02:00:58 +01:00
|
|
|
in $\delta$, hence $\delta \in D_{\overline{\gamma}}$.
|
2023-12-04 15:46:30 +01:00
|
|
|
\end{subproof}
|
2024-02-13 02:00:58 +01:00
|
|
|
}{%
|
|
|
|
\begin{itemize}
|
|
|
|
\item Fix $\langle C_\beta : \beta < \alpha \rangle$.
|
|
|
|
Set $D_{\beta} \coloneqq \bigcap_{\gamma \le \beta} D_{\gamma}$.
|
|
|
|
It suffices to analyze $D_{\beta}$.
|
|
|
|
\item $\diagi_{\beta < \kappa} D_{\beta}$ is closed in $\kappa$:
|
|
|
|
\begin{itemize}
|
|
|
|
\item Let $\gamma < \kappa$ such that $\left( \diagi_{\beta < \kappa} D_{\beta}\right) \cap \gamma$ unbounded in $\gamma$.
|
|
|
|
Want $\gamma \in \diagi_{\beta < \kappa} D_\beta$.
|
|
|
|
\item Let $\beta_0 < \gamma$. Want $\gamma \in D_{\beta_0}$.
|
|
|
|
\item $D_{\beta_0} \cap \gamma$ is unbounded in $\gamma$
|
|
|
|
($D_{\beta_0} \setminus \beta_0 \supseteq \diagi_{\beta < \kappa} D_{\beta} \setminus \beta_0$)
|
|
|
|
$\overset{D_{\beta_0} \text{ closed}}{\implies} \gamma \in D_{\beta_0}$.
|
|
|
|
\end{itemize}
|
|
|
|
\item $\diagi_{\beta < \kappa} D_\beta$ is unbounded in $\kappa$:
|
|
|
|
\begin{itemize}
|
|
|
|
\item Fix $\gamma < \kappa$. We need to find $\diagi_{\beta < \kappa} D_\beta \ni \delta > \gamma$.
|
|
|
|
\item Define $\langle \gamma_n : n < \omega \rangle$
|
|
|
|
by $\gamma_0 \coloneqq \gamma$,
|
|
|
|
$\gamma_{n+1} \coloneqq \min D_{\gamma_n} \setminus (\gamma_n + 1)$,
|
|
|
|
$\delta \coloneqq \sup_n \gamma_n \overset{\cf(\kappa) > \omega}{<} \kappa$
|
|
|
|
\item Want $\delta \in \diagi_{\beta < \kappa} D_\beta$,
|
|
|
|
i.e.~$\forall \epsilon < \delta.~\delta\in D_\epsilon$.
|
|
|
|
|
|
|
|
If $\epsilon < \delta$, then $\epsilon \le \gamma_n$
|
|
|
|
for $n$ large enough,
|
|
|
|
so $\gamma_{m+1} \in D_{\gamma_m} \subseteq D_{\gamma_n} \subseteq D_\epsilon$
|
|
|
|
for $m \ge n$.
|
|
|
|
Thus $\sup(D_\epsilon \cap \delta) = \delta$
|
|
|
|
$\overset{D_\epsilon \text{ closed}}{\implies} \delta \in D_{\epsilon}$.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
}
|
|
|
|
\end{refproof}
|
2024-01-17 11:51:59 +01:00
|
|
|
\begin{remark}+
|
2024-02-13 02:00:58 +01:00
|
|
|
$\diagi_{\beta < \kappa} C_{\beta}$ actually
|
2024-01-17 11:51:59 +01:00
|
|
|
\emph{is} a club:
|
2024-02-13 02:00:58 +01:00
|
|
|
It suffices to show that $\diagi_{\beta < \kappa} C_\beta$ is closed.
|
|
|
|
This can be shown in the same way as for $\diagi_{\beta < \kappa} D_\beta$.
|
|
|
|
% Let $\lambda < \kappa$ be a limit ordinal.
|
|
|
|
% Suppose that $\lambda \not\in \diagi_{\beta < \kappa} D_\beta$.
|
|
|
|
% Then there exists $\alpha < \lambda$ such that
|
|
|
|
% $\lambda \not\in D_\alpha$.
|
|
|
|
% Since $D_\alpha$ is closed,
|
|
|
|
% we get $\sup(D_{\alpha} \cap \lambda) < \lambda$.
|
|
|
|
% In particular $\sup (\lambda \cap\diagi_{\beta < \kappa} D_{\beta}) \le \alpha \cup \sup(D_\alpha \cap \lambda) < \lambda$.
|
2024-01-17 11:51:59 +01:00
|
|
|
\end{remark}
|
2023-12-04 15:46:30 +01:00
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $\kappa$ be regular and uncountable.
|
|
|
|
$S \subseteq \kappa$ is called \vocab{stationary} (in $\kappa$)
|
|
|
|
iff $C \cap S \neq \emptyset$
|
|
|
|
for every club $C \subseteq \kappa$.
|
|
|
|
\end{definition}
|
|
|
|
\begin{example}
|
|
|
|
\begin{itemize}
|
|
|
|
\item Every $D \subseteq \kappa$ which is club in $\kappa$
|
|
|
|
is stationary in $\kappa$.
|
|
|
|
\item There exist disjoint stationary sets:\footnote{Note that clubs can never be disjoint, since their intersection is a club.}
|
|
|
|
Let $\kappa = \omega_2$.
|
|
|
|
Let $S_0 \coloneqq \{\xi < \kappa : \cf(\xi) = \omega\}$
|
|
|
|
and $S_1 \coloneqq \{\xi < \kappa : \cf(\xi) = \omega_1\}$.
|
|
|
|
Clearly these are disjoint.
|
|
|
|
They are both stationary:
|
|
|
|
Let $c \subseteq \kappa$ be a club.
|
|
|
|
Let $(\xi_i : i \le \omega_1)$
|
|
|
|
be defined as follows:
|
|
|
|
$\xi_0 \coloneqq \min C$,
|
|
|
|
$\xi_i \coloneqq \min (C \setminus \sup_{j < i} \xi_j)$.
|
|
|
|
For $i \le \omega_1$ we have that $\xi_i = \sup_{j < i} \xi_j$.
|
|
|
|
In particular $\xi_\omega \in S_0 \cap C$
|
|
|
|
and $\xi_{\omega_1} \in S_1 \cap C$.
|
|
|
|
\end{itemize}
|
|
|
|
\end{example}
|
|
|
|
We will show later that if $ \kappa$ is a regular uncountable cardinal,
|
|
|
|
then every stationary $S \subseteq \kappa$ can be written as
|
|
|
|
$S = \bigcup_{i < \kappa} S_i$,
|
|
|
|
where the $S_i$ are stationary and pairwise disjoint.
|
|
|
|
|
|
|
|
|