This commit is contained in:
parent
68280c4b70
commit
ede97ee426
3 changed files with 232 additions and 1 deletions
|
@ -130,11 +130,12 @@ We have shown (assuming \AxC to choose contained clubs):
|
|||
\]
|
||||
\end{definition}
|
||||
\begin{lemma}
|
||||
\label{lem:diagiclub}
|
||||
Let $\kappa$ be a regular, uncountable cardinal.
|
||||
If $\langle C_{\beta} : \beta < \kappa \rangle$
|
||||
is a sequence of club subsets of $\kappa$,
|
||||
then $\diagi_{\beta < \kappa} C_{\beta}$
|
||||
contains a club.
|
||||
contains a club. % TODO: contains or is?
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let us fix $\langle C_{\beta} : \beta < \alpha \rangle$.
|
||||
|
|
229
inputs/lecture_15.tex
Normal file
229
inputs/lecture_15.tex
Normal file
|
@ -0,0 +1,229 @@
|
|||
\lecture{15}{2023-12-07}{}
|
||||
% RECAP
|
||||
|
||||
% Let $\kappa$ be uncountable and regular.
|
||||
% If $\alpha < \kappa$ and $\{C_{\xi} : \xi < \alpha\}$
|
||||
% is a family of sets which are club in $\kappa$
|
||||
% then $\bigcap_{\xi < \alpha} C_\xi$ is a club.
|
||||
%
|
||||
% If $\{C_\xi : \xi < \kappa\}$ is a family of sets which are club in $\kappa$,
|
||||
% then $\diagi_{\xi < \kappa} = \{\alpha < \kappa : \alpha \in \bigcap_{\xi < \alpha} C_\xi\}$
|
||||
% is a club.
|
||||
|
||||
% END RECAP
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{theorem}[Fodor]
|
||||
\yalabel{Fodor's Theorem}{Fodor}{thm:fodor}
|
||||
Let $\kappa$ be a regular and uncountable cardinal.
|
||||
Let $S \subseteq \kappa$ be stationary and
|
||||
let $f\colon S \to \kappa$ be \vocab{regressive}
|
||||
in the following sense:
|
||||
$f(\alpha) < \alpha$ for all $\alpha \in S$.
|
||||
|
||||
Then there exists a stationary subset $T \subseteq S$
|
||||
and some $\nu < \kappa$ such that
|
||||
$f(\alpha) = \nu$ for all $\alpha \in T$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Let $S, f$ be given.
|
||||
For $\nu < \kappa$ set $S_\nu \coloneqq \{\alpha \in S : f(\alpha) = \nu\}$. % f^{-1}(\nu)$.
|
||||
We aim to show that one of the $S_\nu$ is stationary.
|
||||
Suppose otherwise.
|
||||
Then for every $\nu$ there exists a club $C_\nu$
|
||||
such that $S_\nu \cap C_\nu = \emptyset$.\footnote{Here we use \AxC to choose the $C_\nu$ uniformly.}
|
||||
Let $C = \diagi_{\nu < \alpha} C_\nu$.
|
||||
By \yaref{lem:diagiclub} $C$ is a club.\todo{Show that it \emph{is} a club not just contains one}
|
||||
So we may pick some $\alpha \in C \cap S$.
|
||||
In particular $\alpha \in C_\nu$ for all $\nu < \alpha$.
|
||||
Hence $f(\alpha) \neq \nu$ for all $\nu < \alpha$,
|
||||
so $f(\alpha) \ge \alpha$.
|
||||
But $f$ is regressive $\lightning$
|
||||
\end{proof}
|
||||
|
||||
\subsection{Some model theory and a second proof of Fodor's Theorem}
|
||||
|
||||
|
||||
Recall the following:
|
||||
|
||||
\begin{definition}
|
||||
A substructure $X \subseteq V_\theta$\todo{make this more general. Explain why $V_\theta$ is a model}
|
||||
is an \vocab{elementary substructure}
|
||||
of $V_\theta$,
|
||||
denoted $X \prec V_{\theta}$,\footnote{more formally $(X,\in ) \prec (V_{\theta})$}
|
||||
iff for all formulae $\phi$ of the language of set theory
|
||||
and for all $x_1,\ldots,x_k \in X$,
|
||||
\[
|
||||
(X; \in\defon{X}) \models \phi(x_1,\ldots,x_k)
|
||||
\iff(V_\theta; \in\defon{V_\theta}) \models\phi(x_1,\ldots,x_k).
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{remark}
|
||||
Löwenheim-Skolem allows us to find elementary substructures
|
||||
of arbitrary sizes.
|
||||
How do we do this?
|
||||
Let $\phi$ be a formula.
|
||||
A \vocab{Skolem-function}
|
||||
over $V_\theta$ for $\phi$
|
||||
is a function
|
||||
\[
|
||||
f\colon {}^k V_\theta \to V_\theta,
|
||||
\]
|
||||
where $k$ is the number of free variables of
|
||||
$\exists v.~\phi$
|
||||
and for all $x_1,\ldots,x_k \in V_\theta$,
|
||||
if $(V_\theta, \in) \models \exists v.~\phi(v,x_1,\ldots,x_k)$
|
||||
then $(V_\theta, \in) \models \phi(f(x_1,\ldots,x_k),x_1,\ldots,x_k)$.
|
||||
|
||||
Using \AxC such Skolem-functions can be easily found for all formulae.
|
||||
\end{remark}
|
||||
|
||||
There is a sufficient criterion for $X \subseteq V_{\theta}$
|
||||
to be an elementary substructure of $V_\theta$.
|
||||
\begin{lemma}[Tarski-Vaught Test]
|
||||
Let $X \subseteq V_\theta$.
|
||||
For each formula $\phi$,
|
||||
let $f_\phi$ be a Skolem function over $V_\theta$ for $\phi$.
|
||||
If for every $\phi$ and for all $x_1,\ldots, x_k \in X$
|
||||
(where $k$ is the number of free variables of $\exists v.~\phi$)
|
||||
$f_\phi(x_1,\ldots,x_k) \in X$,
|
||||
then $X \prec V_{\theta}$.
|
||||
|
||||
\end{lemma}
|
||||
|
||||
Let's do a second proof of \yaref{thm:fodor}.
|
||||
\begin{refproof}{thm:fodor}
|
||||
Fix $\theta > \kappa$ and look at $V_{\theta}$.
|
||||
|
||||
Fix $S \subseteq \kappa$ stationary
|
||||
and $f\colon S \to \kappa$ regressive.
|
||||
|
||||
For each formula $\phi$
|
||||
fix a Skolem function $f_\phi$
|
||||
over $V_\theta$ for $\phi$.
|
||||
Let $(X_\xi: \xi \le \kappa)$
|
||||
be a sequence of elementary substructures
|
||||
of $V_\theta$
|
||||
defined as follows:
|
||||
Let $X_0$ be the least $X$ such that
|
||||
$S, f \in X$ and $X$ is closed under $f_\phi$.
|
||||
Note that $X_0$ is countable.
|
||||
|
||||
For $\xi < \kappa$ let
|
||||
$X_{\xi + 1}$
|
||||
be the least $X \subseteq V_\theta$
|
||||
such that $X_\xi \subseteq X$,
|
||||
$\min(\kappa \setminus X_\xi) \in X$ and $X$ is closed under
|
||||
all $f_\phi$.
|
||||
For limits $\lambda \le \kappa$
|
||||
let
|
||||
\[
|
||||
X_\lambda \coloneqq \bigcup_{\xi < \lambda} X_\xi.
|
||||
\]
|
||||
|
||||
Note that $|X_{\xi}| = |X_{\xi + 1}|$
|
||||
but the size is increased at limits.
|
||||
It is easy to see inductively that $|X_{\xi}| < \kappa$
|
||||
for every $\xi < \kappa$,
|
||||
while $X_\xi \subsetneq X_{\xi'}$
|
||||
for all $\xi < \xi' \le \kappa$.
|
||||
|
||||
Also $\xi \subseteq X_\xi$ for all $\xi \le \kappa$.
|
||||
|
||||
|
||||
\begin{claim}
|
||||
\label{thm:fodor:p2:c1}
|
||||
There is a club $C \subseteq \kappa$
|
||||
such that $X_\xi \cap \kappa = \xi$
|
||||
for all $\xi \in C$.
|
||||
\end{claim}
|
||||
\begin{refproof}{thm:fodor:p2:c1}
|
||||
Write $C = \{\xi < \kappa:X_\xi \cap \kappa = \xi\}$.
|
||||
Trivially $C$ is closed.
|
||||
Let us show that $C$ is unbounded in $\kappa$.
|
||||
Let $\zeta < \kappa$.
|
||||
Let us define a strictly increasing sequence
|
||||
$ \langle \xi_n n < \omega \rangle$
|
||||
a follows.
|
||||
Set $\xi_0 \coloneqq \zeta$.
|
||||
Suppose $\xi_n$ has been chosen.
|
||||
Look at $X_{\xi_n} \cap \kappa$.
|
||||
Since $|X_{\xi_n} \cap \kappa| < \kappa$,
|
||||
$\sup (X_{\xi_n \cap \kappa}) < \kappa$.
|
||||
Set $\xi_{n+1} \coloneqq \sup(X_{\xi_n} \cap \kappa) + 1$.
|
||||
Set $\xi \coloneqq \sup_{n<\omega} \xi_n$.
|
||||
Clearly $\zeta < \xi$.
|
||||
\begin{claim}
|
||||
\label{thm:fodor:p2:c1.1}
|
||||
$\xi \in C$, i.e.~$X_\xi \cap \kappa = \xi$.
|
||||
\end{claim}
|
||||
\begin{refproof}{thm:fodor:p2:c1.1}
|
||||
If $\eta < \xi$,
|
||||
then $\eta < \xi_n$ for some $n$
|
||||
and then $\eta \in \xi_n \subseteq X_{\xi_n} \subseteq X_{\xi}$.
|
||||
|
||||
Now let $\eta \in X_\xi \cap \kappa$.
|
||||
Then $\eta \in X_{\xi_n}$ for some $n < \omega$,
|
||||
so $\eta < \xi_{n+1} < \xi$,
|
||||
hence $X_{\xi} \cap \kappa \subseteq \xi$.
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
Now let $\alpha \in S \cap C$,
|
||||
i.e.~$X_\alpha \prec V_{\theta}$
|
||||
and $\alpha = X_{\alpha} \cap \kappa$.
|
||||
$f \in X_{\alpha}$
|
||||
and $f$ is regressive, so $f(\alpha) < \alpha$.
|
||||
Write $\nu = f(\alpha)$.
|
||||
Let $T = \{\xi \in S: f(\xi) = \nu\}$.
|
||||
We have $T \in X_{\alpha}$,
|
||||
as $T$ is definable from $S,f,\nu \in X_\alpha$.
|
||||
|
||||
\begin{claim}
|
||||
$T$ is stationary.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Otherwise there is a club $D \subseteq \kappa$
|
||||
such that $D \cap T = \emptyset$,
|
||||
i.e.~
|
||||
\[V_\theta \models \exists D .~ D\text{ club in $\kappa$} \land D \cap T = \emptyset\]
|
||||
hence
|
||||
\[X_\alpha\models \exists D .~ D\text{ club in $\kappa$} \land D \cap T = \emptyset.\]
|
||||
So there is $D \in X_\alpha$ such that
|
||||
\[
|
||||
X_\alpha \models D \text{ is club in $\kappa$} \land D \cap T = \emptyset,
|
||||
\]
|
||||
hence
|
||||
\[
|
||||
V_\theta \models D \text{ is club in $\kappa$} \land D \cap T = \emptyset.
|
||||
\]
|
||||
In other words,
|
||||
there is some club
|
||||
$D \in X_\alpha$ with $D \cap T = \emptyset$.
|
||||
|
||||
|
||||
|
||||
We have $\alpha \in T$ as $\alpha \in S$ and $f(\alpha) = \nu$.
|
||||
Let us show that $\alpha \in D$, which gives a contradiction.
|
||||
For $\alpha \in D$ it suffices to show that $D \cap \alpha$
|
||||
is unbounded in $\alpha$.
|
||||
Let $\xi < \alpha$.
|
||||
As $D$ is unbounded in $\kappa$,
|
||||
$\exists \eta > \xi .~ \eta \in D$,
|
||||
so
|
||||
\[
|
||||
V_{\theta} \models \exists \eta > \xi .~ \eta \in D,
|
||||
\]
|
||||
hence
|
||||
\[
|
||||
X_\alpha \models \exists \eta > \xi .~ \eta \in D.
|
||||
\]
|
||||
Hence there is some $\eta \in X_\alpha$ with $\eta \in D$.
|
||||
This means that
|
||||
$\xi < \underbrace{\eta}_{\in D} < \alpha$..
|
||||
\end{subproof}
|
||||
\end{refproof}
|
||||
|
||||
|
|
@ -38,6 +38,7 @@
|
|||
\input{inputs/lecture_12}
|
||||
\input{inputs/lecture_13}
|
||||
\input{inputs/lecture_14}
|
||||
\input{inputs/lecture_15}
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
|
|
Loading…
Reference in a new issue