s23-probability-theory/inputs/vl8.tex

92 lines
3.7 KiB
TeX

% TODO \begin{goal}
% TODO We want to drop our assumptions on finite mean or variance
% TODO and say something about the behaviour of $ \sum_{n \ge 1} X_n$
% TODO when the $X_n$ are independent.
% TODO \end{goal}
\begin{theorem}[Theorem 3, Kolmogorov's three-series theorem] % Theorem 3
\label{thm3}
Let $X_n$ be a family of independent random variables.
\begin{enumerate}[(a)]
\item Suppose for some $C \ge 0$, the following three series
of numbers converge:
\begin{itemize}
\item $\sum_{n \ge 1} \bP(|X_n| > C)$,
\item $\sum_{n \ge 1} \underbrace{\int_{|X_n| \le C} X_n d\bP}_{\text{\vocab{truncated mean}}}$,
\item $\sum_{n \ge 1} \underbrace{\int_{|X_n| \le C} X_n^2 d\bP - \left( \int_{|X_n| \le C} X_n d\bP \right)^2}_{\text{\vocab{truncated variance} }}$.
\end{itemize}
Then $\sum_{n \ge 1} X_n$ converges almost surely.
\item Suppose $\sum_{n \ge 1} X_n$ converges almost surely.
Then all three series above converge for every $C > 0$.
\end{enumerate}
\end{theorem}
For the proof we'll need a slight generalization of \autoref{thm2}:
\begin{theorem}[Theorem 4] % Theorem 4
\label{thm4}
Let $\{X_n\}_n$ be independent and \vocab{uniformly bounded}
(i.e. $\exists M < \infty : \sup_n \sup_\omega |X_n(\omega)| \le M$).
Then $\sum_{n \ge 1} X_n$ converges almost surely
$\iff$ $\sum_{n \ge 1} \bE(X_n)$ and $\sum_{n \ge 1} \Var(X_n)$
converge.
\end{theorem}
\begin{refproof}{thm3}
Assume, that we have already proved \autoref{thm4}.
We prove part (a) first.
Put $Y_n = X_n \cdot \One_{\{|X_n| \le C\}}$.
Since the $X_n$ are independent, the $Y_n$ are independent as well.
Furthermore, the $Y_n$ are uniformly bounded.
By our assumption, the series
$\sum_{n \ge 1} \int_{|X_n| \le C} X_n d\bP = \sum_{n \ge 1} \bE[Y_n]$
and $\sum_{n \ge 1} \int_{|X_n| \le C} X_n^2 d\bP - \left( \int_{|X_n| \le C} X_n d\bP \right)^2 = \sum_{n \ge 1} \Var(Y_n)$
converges.
By \autoref{thm4} it follows that $\sum_{n \ge 1} Y_n < \infty$
almost surely.
Let $A_n \coloneqq \{\omega : |X_n(\omega)| > C\}$.
Since the first series $\sum_{n \ge 1} \bP(A_n) < \infty$,
by Borel-Cantelli, $\bP[\text{infinitely many $A_n$ occcur}] = 0$.
For the proof of (b), suppose $\sum_{n\ge 1} X_n(\omega) < \infty$
for almost every $\omega$.
Fix an arbitrary $C > 0$.
Define
\[
Y_n(\omega) \coloneqq \begin{cases}
X_n(\omega) & \text{if} |X_n(\omega)| \le C,\\
C &\text{if } |X_n(\omega)| > C.
\end{cases}
\]
Then the $Y_n$ are independent and $\sum_{n \ge 1} Y_n(\omega) < \infty$
almost surely and the $Y_n$ are uniformly bounded.
By \autoref{thm4} $\sum_{n \ge 1} \bE[Y_n]$ and $\sum_{n \ge 1} \Var(Y_n)$
converge.
Define
\[
Z_n(\omega) \coloneqq \begin{cases}
X_n(\omega) &\text{if } |X_n| \le C,\\
-C &\text{if } |X_n| > C.
\end{cases}
\]
Then the $Z_n$ are independent, uniformly bounded and $\sum_{n \ge 1} Z_n(\omega) < \infty$
almost surely.
By \autoref{thm4} we have
$\sums_{n \ge 1} \bE(Z_n) < \infty$
and $\sums_{n \ge 1} \Var(Z_n) < \infty$.
We have
\[
\bE(Y_n) &=& \int_{|X_n| \le C} X_n d \bP + C \bP(|X_n| \ge C)\\
\bE(Z_n) &=& \int_{|X_n| \le C} X_n d \bP - C \bP(|X_n| \ge C)\\
\]
Since $\bE(Y_n) + \bE(Z_n) = 2 \int_{|X_n| \le C} X_n d\bP$
the second series converges,
and since
$\bE(Y_n) - \bE(Z_n)$ converges, the first series converges.
For the third series, we look at
$\sum_{n \ge 1} \Var(Y_n)$ and
$\sum_{n \ge 1} \Var(Z_n)$ to conclude that this series converges
as well.
\end{refproof}