% TODO \begin{goal} % TODO We want to drop our assumptions on finite mean or variance % TODO and say something about the behaviour of $ \sum_{n \ge 1} X_n$ % TODO when the $X_n$ are independent. % TODO \end{goal} \begin{theorem}[Theorem 3, Kolmogorov's three-series theorem] % Theorem 3 \label{thm3} Let $X_n$ be a family of independent random variables. \begin{enumerate}[(a)] \item Suppose for some $C \ge 0$, the following three series of numbers converge: \begin{itemize} \item $\sum_{n \ge 1} \bP(|X_n| > C)$, \item $\sum_{n \ge 1} \underbrace{\int_{|X_n| \le C} X_n d\bP}_{\text{\vocab{truncated mean}}}$, \item $\sum_{n \ge 1} \underbrace{\int_{|X_n| \le C} X_n^2 d\bP - \left( \int_{|X_n| \le C} X_n d\bP \right)^2}_{\text{\vocab{truncated variance} }}$. \end{itemize} Then $\sum_{n \ge 1} X_n$ converges almost surely. \item Suppose $\sum_{n \ge 1} X_n$ converges almost surely. Then all three series above converge for every $C > 0$. \end{enumerate} \end{theorem} For the proof we'll need a slight generalization of \autoref{thm2}: \begin{theorem}[Theorem 4] % Theorem 4 \label{thm4} Let $\{X_n\}_n$ be independent and \vocab{uniformly bounded} (i.e. $\exists M < \infty : \sup_n \sup_\omega |X_n(\omega)| \le M$). Then $\sum_{n \ge 1} X_n$ converges almost surely $\iff$ $\sum_{n \ge 1} \bE(X_n)$ and $\sum_{n \ge 1} \Var(X_n)$ converge. \end{theorem} \begin{refproof}{thm3} Assume, that we have already proved \autoref{thm4}. We prove part (a) first. Put $Y_n = X_n \cdot \One_{\{|X_n| \le C\}}$. Since the $X_n$ are independent, the $Y_n$ are independent as well. Furthermore, the $Y_n$ are uniformly bounded. By our assumption, the series $\sum_{n \ge 1} \int_{|X_n| \le C} X_n d\bP = \sum_{n \ge 1} \bE[Y_n]$ and $\sum_{n \ge 1} \int_{|X_n| \le C} X_n^2 d\bP - \left( \int_{|X_n| \le C} X_n d\bP \right)^2 = \sum_{n \ge 1} \Var(Y_n)$ converges. By \autoref{thm4} it follows that $\sum_{n \ge 1} Y_n < \infty$ almost surely. Let $A_n \coloneqq \{\omega : |X_n(\omega)| > C\}$. Since the first series $\sum_{n \ge 1} \bP(A_n) < \infty$, by Borel-Cantelli, $\bP[\text{infinitely many $A_n$ occcur}] = 0$. For the proof of (b), suppose $\sum_{n\ge 1} X_n(\omega) < \infty$ for almost every $\omega$. Fix an arbitrary $C > 0$. Define \[ Y_n(\omega) \coloneqq \begin{cases} X_n(\omega) & \text{if} |X_n(\omega)| \le C,\\ C &\text{if } |X_n(\omega)| > C. \end{cases} \] Then the $Y_n$ are independent and $\sum_{n \ge 1} Y_n(\omega) < \infty$ almost surely and the $Y_n$ are uniformly bounded. By \autoref{thm4} $\sum_{n \ge 1} \bE[Y_n]$ and $\sum_{n \ge 1} \Var(Y_n)$ converge. Define \[ Z_n(\omega) \coloneqq \begin{cases} X_n(\omega) &\text{if } |X_n| \le C,\\ -C &\text{if } |X_n| > C. \end{cases} \] Then the $Z_n$ are independent, uniformly bounded and $\sum_{n \ge 1} Z_n(\omega) < \infty$ almost surely. By \autoref{thm4} we have $\sums_{n \ge 1} \bE(Z_n) < \infty$ and $\sums_{n \ge 1} \Var(Z_n) < \infty$. We have \[ \bE(Y_n) &=& \int_{|X_n| \le C} X_n d \bP + C \bP(|X_n| \ge C)\\ \bE(Z_n) &=& \int_{|X_n| \le C} X_n d \bP - C \bP(|X_n| \ge C)\\ \] Since $\bE(Y_n) + \bE(Z_n) = 2 \int_{|X_n| \le C} X_n d\bP$ the second series converges, and since $\bE(Y_n) - \bE(Z_n)$ converges, the first series converges. For the third series, we look at $\sum_{n \ge 1} \Var(Y_n)$ and $\sum_{n \ge 1} \Var(Z_n)$ to conclude that this series converges as well. \end{refproof}