s23-probability-theory/inputs/lecture_11.tex
2023-07-28 03:45:37 +02:00

133 lines
5.5 KiB
TeX

\lecture{11}{}{Intuition for the CLT}
\subsection{The Central Limit Theorem}
For $X_1, X_2,\ldots$ i.i.d.~we were looking
at $S_n \coloneqq \sum_{i=1}^n X_i$.
Then the LLN basically states, that $S_n$ can be approximated by $n \bE[X_1]$.
\begin{question}
What is the error of this approximation?
\end{question}
We set $\mu\coloneqq \bE[X_1]$ and $\sigma^2 \coloneqq \Var(X_1) \in (0,\infty)$.
We know that $\bE[S_n] = n \mu$ and $\Var(S_n) = n\sigma^2$.
The central limit theorem basically states, that the distribution of $S_n$
can be approximated by a normal distribution with mean $n \mu$ and
variance $n \sigma^2$,
i.e.~$S_n \approx n \mu + \sigma \sqrt{n} N$ for $N \sim \cN(0,1)$,
where $\approx$ is to be made precise.
For intuition, watch \url{https://3blue1brown.com/lessons/clt}.
\begin{example}
We throw a fair die $n = 100$ times and denote the sum of the faces
by $S_n \coloneqq X_1 + \ldots + X_n$, where $X_1,\ldots, X_n$
are i.i.d.~and uniformly distributed on $\{1,\ldots,6\}$.
Then $\bE[S_n] = 350$ and $\sqrt{\Var(S_n)} = \sigma \approx 17.07$.
\todo{Missing pictures}
\end{example}
\begin{question}
Why do statisticians care about $\sigma$ instead of $\sigma^2$?
\end{question}
By definition, $\Var(X) = \bE[(X- \bE(X))^2]$, hence $\sqrt{\Var(X)}$
can be interpreted as a distance.
One could also define $\Var(X)$ to be $\bE[|X - \bE(X)|]$ but this is not
well behaved.
\begin{example}
Let $X_1,\ldots,X_n$ be i.i.d.~and $X_1\sim \Exp(1)$.
We knot that for $n \in \N$, $\bE[S_n] = n$
and $\sqrt{\Var(S_n)} = \sqrt{n}$.
For $n = 100, 300, 500$, we get the following picture
\todo{Missing picture}
\end{example}
In order to make things nicer, we do the following:
\begin{enumerate}[1.]
\item center: $S_n - \bE[S_n]$,
\item normalize: $\frac{S_n - \bE[S_n]}{\sqrt{\Var(S_n)} }$.
\end{enumerate}
Then $\bE[\frac{S_n - \bE[S_n]}{\sqrt{\Var(S_n)}}] = 0$
and $\Var(\frac{S_n - \bE[S_n]}{\sqrt{\Var(S_n)}}) = 1$.
\begin{theorem}[Central limit theorem, 1920s, Lindeberg and Levy]%
\yalabel{Central Limit Theorem}{CLT}{clt}
Let $X_1,X_2,\ldots$ be i.i.d.~random variables
with $\bE[X_1] = \mu$ and $\Var(X_1) = \sigma^2 \in (0, \infty)$.
Let $S_n \coloneqq \sum_{i=1}^n X_i$.
Then
\[
\frac{S_n - n \nu}{\sigma \sqrt{n} } \xrightarrow{\text{d}} \cN(0,1),
\]
i.e.~$\forall x \in \R:$
\[
\lim_{n \to \infty} \bP\left[\frac{S_n - n \mu}{\sigma \sqrt{n} } \le x\right] = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2 \pi} } e^{\frac{-t^2}{2}}dt.
\]
\end{theorem}
We will abbreviate the central limit theorem by \vocab{CLT}.
There exists a special case of this theorem, which was proved earlier:
\begin{theorem}[de-Moivre (1730, $p = 0.5$), Laplace (1812, general $p$ )]
\label{preclt}
Let $S_n = \Bin(n,p)$, where $p \in (0,1)$ is constant.
Then, for all $x \in \R$ :
\[
\lim_{n \to \infty} \bP\left[ \frac{ S_n - np}{\sqrt{n p(1-p)}} \le x\right] = \Phi(x).
\]
\end{theorem}
\begin{proof}
Let $X_1, X_2,\ldots$ i.i.d.~with $X_1 \sim \Ber(p)$.
Then $\bE[X_1] = p$ and $\Var(X_1) = p(1-p )$.
Furthermore $\sum_{i=1}^n X_i \sim \Bin(n,p)$,
and the special case follows from \yaref{clt}.
\end{proof}
\yaref{preclt} is a useful tool for approximating the Binomial distribution with the normal distribution.
If $S_n \sim \Bin(n,p)$ and $[a,b] \subseteq \R$, we have
\[\bP[a \le S_n \le b] = \bP\left[\frac{a - np}{\sqrt{np(1-p)}} \le \frac{S_n -np}{\sqrt{n p (1-p)}} \le \frac{b - np}{\sqrt{n p (1-p)} }\right] \approx \Phi(b') - \Phi(a').\]
\begin{example}
We consider a $n=40$-times Bernoulli trial with success probability $p = \frac{1}{2}$.
Then $0.9597 = \bP[S \le 25] \approx \Phi(\frac{5}{\sqrt{10}} \approx 0.9431$.
However, $S$ takes only integer values, which means $\bP[S \le 25] = \bP[S 26]$.
With this in mind, a better approximation is
\[
\bP[S \le 25] = \bP[S \le 25.5] \approx \Phi\left( \frac{5.5}{\sqrt{10} } \right) \approx 0.9541.
\]
\end{example}
\begin{example}
Consider a particle that start at $0$ and moves on the lattice $\Z$.
In every step, takes a step $+ 1$ with probability $\frac{1}{2}$
or $-1$ with probability $\frac{1}{2}$.
More formally: Let $X_1,X_2,\ldots$ be i.i.d.~with $\bP[X_1=1] = \bP[X_1=-1] = \frac{1}{2}$ and consider $S_n \coloneqq \sum_{i=1}^n X_i$.
Then the \yaref{clt} states, that $S_n \approx \cN(0,n)$.
\end{example}
\begin{example}
Consider an election with two candidates $A$ and $B$.
The relative number of votes for $A$ is $p \in (0,1)$ (constatn, but unknown)
How many ballots do we need to count to make sure that the probability of erring more than $1\%$ is not bigger than $5\%$?
Each ballot is a vote for $A$ with probability $p$.
We have $S_n \sim \Bin(n,p)$ and we want to find $n$ such that
$\bP[|S_n - np| \le 0.01 n] \le 0.05$.
We have that
\begin{IEEEeqnarray*}{rCl}
&&\bP[|S_n - np| \le 0.01n] \\
&=& \bP[ -0.01 n \le S_n - np \le 0.01n]\\
&=& \bP[-\frac{0.01 n}{\sqrt{n p (1-p)} } \le \frac{S_n - np}{\sqrt{n p (1-p)} } \le \frac{0.01 n}{\sqrt{n p (1-p)}}\\
&\approx& \Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) - \Phi(-0.01 \sqrt{\frac{n}{p(1-p)}})\\
&=& 2\Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) - 1\\
\end{IEEEeqnarray*}
Hence, we want $\Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) \approx \frac{1.95}{2}$,
i.e.~$n = (1.96)^2 100^2 p\cdot (1-p)$
We have $p\cdot (1-p) \le \frac{1}{4}$,
thus $n \approx (1.96)^2 \cdot 100^2 \cdot \frac{1}{4} = 9600$ suffices.
\end{example}