\lecture{11}{}{Intuition for the CLT} \subsection{The Central Limit Theorem} For $X_1, X_2,\ldots$ i.i.d.~we were looking at $S_n \coloneqq \sum_{i=1}^n X_i$. Then the LLN basically states, that $S_n$ can be approximated by $n \bE[X_1]$. \begin{question} What is the error of this approximation? \end{question} We set $\mu\coloneqq \bE[X_1]$ and $\sigma^2 \coloneqq \Var(X_1) \in (0,\infty)$. We know that $\bE[S_n] = n \mu$ and $\Var(S_n) = n\sigma^2$. The central limit theorem basically states, that the distribution of $S_n$ can be approximated by a normal distribution with mean $n \mu$ and variance $n \sigma^2$, i.e.~$S_n \approx n \mu + \sigma \sqrt{n} N$ for $N \sim \cN(0,1)$, where $\approx$ is to be made precise. For intuition, watch \url{https://3blue1brown.com/lessons/clt}. \begin{example} We throw a fair die $n = 100$ times and denote the sum of the faces by $S_n \coloneqq X_1 + \ldots + X_n$, where $X_1,\ldots, X_n$ are i.i.d.~and uniformly distributed on $\{1,\ldots,6\}$. Then $\bE[S_n] = 350$ and $\sqrt{\Var(S_n)} = \sigma \approx 17.07$. \todo{Missing pictures} \end{example} \begin{question} Why do statisticians care about $\sigma$ instead of $\sigma^2$? \end{question} By definition, $\Var(X) = \bE[(X- \bE(X))^2]$, hence $\sqrt{\Var(X)}$ can be interpreted as a distance. One could also define $\Var(X)$ to be $\bE[|X - \bE(X)|]$ but this is not well behaved. \begin{example} Let $X_1,\ldots,X_n$ be i.i.d.~and $X_1\sim \Exp(1)$. We knot that for $n \in \N$, $\bE[S_n] = n$ and $\sqrt{\Var(S_n)} = \sqrt{n}$. For $n = 100, 300, 500$, we get the following picture \todo{Missing picture} \end{example} In order to make things nicer, we do the following: \begin{enumerate}[1.] \item center: $S_n - \bE[S_n]$, \item normalize: $\frac{S_n - \bE[S_n]}{\sqrt{\Var(S_n)} }$. \end{enumerate} Then $\bE[\frac{S_n - \bE[S_n]}{\sqrt{\Var(S_n)}}] = 0$ and $\Var(\frac{S_n - \bE[S_n]}{\sqrt{\Var(S_n)}}) = 1$. \begin{theorem}[Central limit theorem, 1920s, Lindeberg and Levy]% \yalabel{Central Limit Theorem}{CLT}{clt} Let $X_1,X_2,\ldots$ be i.i.d.~random variables with $\bE[X_1] = \mu$ and $\Var(X_1) = \sigma^2 \in (0, \infty)$. Let $S_n \coloneqq \sum_{i=1}^n X_i$. Then \[ \frac{S_n - n \nu}{\sigma \sqrt{n} } \xrightarrow{\text{d}} \cN(0,1), \] i.e.~$\forall x \in \R:$ \[ \lim_{n \to \infty} \bP\left[\frac{S_n - n \mu}{\sigma \sqrt{n} } \le x\right] = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2 \pi} } e^{\frac{-t^2}{2}}dt. \] \end{theorem} We will abbreviate the central limit theorem by \vocab{CLT}. There exists a special case of this theorem, which was proved earlier: \begin{theorem}[de-Moivre (1730, $p = 0.5$), Laplace (1812, general $p$ )] \label{preclt} Let $S_n = \Bin(n,p)$, where $p \in (0,1)$ is constant. Then, for all $x \in \R$ : \[ \lim_{n \to \infty} \bP\left[ \frac{ S_n - np}{\sqrt{n p(1-p)}} \le x\right] = \Phi(x). \] \end{theorem} \begin{proof} Let $X_1, X_2,\ldots$ i.i.d.~with $X_1 \sim \Ber(p)$. Then $\bE[X_1] = p$ and $\Var(X_1) = p(1-p )$. Furthermore $\sum_{i=1}^n X_i \sim \Bin(n,p)$, and the special case follows from \yaref{clt}. \end{proof} \yaref{preclt} is a useful tool for approximating the Binomial distribution with the normal distribution. If $S_n \sim \Bin(n,p)$ and $[a,b] \subseteq \R$, we have \[\bP[a \le S_n \le b] = \bP\left[\frac{a - np}{\sqrt{np(1-p)}} \le \frac{S_n -np}{\sqrt{n p (1-p)}} \le \frac{b - np}{\sqrt{n p (1-p)} }\right] \approx \Phi(b') - \Phi(a').\] \begin{example} We consider a $n=40$-times Bernoulli trial with success probability $p = \frac{1}{2}$. Then $0.9597 = \bP[S \le 25] \approx \Phi(\frac{5}{\sqrt{10}} \approx 0.9431$. However, $S$ takes only integer values, which means $\bP[S \le 25] = \bP[S 26]$. With this in mind, a better approximation is \[ \bP[S \le 25] = \bP[S \le 25.5] \approx \Phi\left( \frac{5.5}{\sqrt{10} } \right) \approx 0.9541. \] \end{example} \begin{example} Consider a particle that start at $0$ and moves on the lattice $\Z$. In every step, takes a step $+ 1$ with probability $\frac{1}{2}$ or $-1$ with probability $\frac{1}{2}$. More formally: Let $X_1,X_2,\ldots$ be i.i.d.~with $\bP[X_1=1] = \bP[X_1=-1] = \frac{1}{2}$ and consider $S_n \coloneqq \sum_{i=1}^n X_i$. Then the \yaref{clt} states, that $S_n \approx \cN(0,n)$. \end{example} \begin{example} Consider an election with two candidates $A$ and $B$. The relative number of votes for $A$ is $p \in (0,1)$ (constatn, but unknown) How many ballots do we need to count to make sure that the probability of erring more than $1\%$ is not bigger than $5\%$? Each ballot is a vote for $A$ with probability $p$. We have $S_n \sim \Bin(n,p)$ and we want to find $n$ such that $\bP[|S_n - np| \le 0.01 n] \le 0.05$. We have that \begin{IEEEeqnarray*}{rCl} &&\bP[|S_n - np| \le 0.01n] \\ &=& \bP[ -0.01 n \le S_n - np \le 0.01n]\\ &=& \bP[-\frac{0.01 n}{\sqrt{n p (1-p)} } \le \frac{S_n - np}{\sqrt{n p (1-p)} } \le \frac{0.01 n}{\sqrt{n p (1-p)}}\\ &\approx& \Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) - \Phi(-0.01 \sqrt{\frac{n}{p(1-p)}})\\ &=& 2\Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) - 1\\ \end{IEEEeqnarray*} Hence, we want $\Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) \approx \frac{1.95}{2}$, i.e.~$n = (1.96)^2 100^2 p\cdot (1-p)$ We have $p\cdot (1-p) \le \frac{1}{4}$, thus $n \approx (1.96)^2 \cdot 100^2 \cdot \frac{1}{4} = 9600$ suffices. \end{example}