some facts

This commit is contained in:
Josia Pietsch 2023-07-18 15:57:08 +02:00
parent f097e9adb9
commit bf808be83e
Signed by: josia
GPG Key ID: E70B571D66986A2D
3 changed files with 60 additions and 5 deletions

View File

@ -83,6 +83,35 @@ This will be the weakest notion of convergence, hence it is called
This notion of convergence will be defined in terms of
characteristic functions of Fourier transforms.
\subsection{Convolutions${}^\dagger$}
\begin{definition}+[Convolution]
Let $\mu$ and $\nu$ be probability measures on $\R^d$
with Lebesgue densities $f_\mu$ and $f_\nu$.
Then the \vocab{convolution} of $\mu$ and $\nu$,
$\mu \ast \nu$,
is the probability measure on $\R^d$
with Lebesgue density
\[
f_{\mu \ast \nu}(x) \coloneqq
\int_{\R^d} f_\mu(x - t) f\nu(t) \lambda^d(\dif t)
\]
\end{definition}
\begin{fact}+[Exercise 6.1]
If $X_1,X_2,\ldots$ are independent with
distributions $X_1 \sim \mu_1$,
$X_2 \sim \mu_2, \ldots$,
then $X_1 + \ldots + X_n$
has distribution
\[
\mu_1 \ast \mu_2 \ast \ldots \ast \mu_n.
\]
\end{fact}
\todo{TODO}
\subsection{Characteristic Functions and Fourier Transform}
\begin{definition}
@ -106,7 +135,30 @@ We have
\item We have $\phi(0) = 1$.
\item $|\phi(t)| \le \int_{\R} |e^{\i t x} | \bP(dx) = 1$.
\end{itemize}
\todo{Properties of characteristic functions}
\begin{fact}+
Let $X$, $Y$ be independent random variables
and $a,b \in \R$.
Then
\begin{itemize}
\item $\phi_{a X + b}(t) = e^{\i t b} \phi_X(\frac{t}{a})$,
\item $\phi_{X + Y}(t) = \phi_X(t) + \phi_Y(t)$.
\end{itemize}
\end{fact}
\begin{proof}
We have
\begin{IEEEeqnarray*}{rCl}
\phi_{a X + b}(t) &=& \bE[e^{\i t (aX + b)}}]\\
&=& e^{\i t b} \bE[e^{\i t a X}]\\
&=& e^{\i t b} \phi_X(\frac{t}{a}).
\end{IEEEeqnarray*}
Furthermore
\begin{IEEEeqnarray*}{rCl}
\phi_{X + Y}(t) &=& \bE[e^{\i t (X + Y)}]\\
&=& \bE[e^{\i t X}] \bE[e^{\i t Y}]\\
&=& \phi_X(t) \phi_Y(t).
\end{IEEEeqnarray*}
\end{proof}
\begin{remark}
Suppose $(\Omega, \cF, \bP)$ is an arbitrary probability space and

View File

@ -1,7 +1,5 @@
\lecture{10}{2023-05-09}{}
% RECAP
First, we will prove some of the most important facts about Fourier transforms.
We consider $(\R, \cB(\R))$.

View File

@ -93,7 +93,13 @@ In this lecture we recall the most important point from the lecture.
\item Non-examples: $(\delta_n)_n$
\item How does one prove weak convergence? How does one write this down in a clear way?
% TODO
\begin{itemize}
\item \autoref{lec10_thm1},
\item Levy's continuity theorem
\ref{levycontinuity},
\item Generalization of Levy's continuity theorem
\ref{genlevycontinuity}
\end{itemize}
\end{itemize}
\paragraph{Convolution}
@ -104,7 +110,6 @@ In this lecture we recall the most important point from the lecture.
\end{itemize}
\subsubsubsection{CLT}
\begin{itemize}
\item Statement of the CLT