diff --git a/inputs/lecture_09.tex b/inputs/lecture_09.tex index 99f4671..466b83b 100644 --- a/inputs/lecture_09.tex +++ b/inputs/lecture_09.tex @@ -83,6 +83,35 @@ This will be the weakest notion of convergence, hence it is called This notion of convergence will be defined in terms of characteristic functions of Fourier transforms. +\subsection{Convolutions${}^\dagger$} + +\begin{definition}+[Convolution] + Let $\mu$ and $\nu$ be probability measures on $\R^d$ + with Lebesgue densities $f_\mu$ and $f_\nu$. + Then the \vocab{convolution} of $\mu$ and $\nu$, + $\mu \ast \nu$, + is the probability measure on $\R^d$ + with Lebesgue density + \[ + f_{\mu \ast \nu}(x) \coloneqq + \int_{\R^d} f_\mu(x - t) f\nu(t) \lambda^d(\dif t) + \] + +\end{definition} + +\begin{fact}+[Exercise 6.1] + If $X_1,X_2,\ldots$ are independent with + distributions $X_1 \sim \mu_1$, + $X_2 \sim \mu_2, \ldots$, + then $X_1 + \ldots + X_n$ + has distribution + \[ + \mu_1 \ast \mu_2 \ast \ldots \ast \mu_n. + \] +\end{fact} +\todo{TODO} + + \subsection{Characteristic Functions and Fourier Transform} \begin{definition} @@ -106,7 +135,30 @@ We have \item We have $\phi(0) = 1$. \item $|\phi(t)| \le \int_{\R} |e^{\i t x} | \bP(dx) = 1$. \end{itemize} -\todo{Properties of characteristic functions} + +\begin{fact}+ + Let $X$, $Y$ be independent random variables + and $a,b \in \R$. + Then + \begin{itemize} + \item $\phi_{a X + b}(t) = e^{\i t b} \phi_X(\frac{t}{a})$, + \item $\phi_{X + Y}(t) = \phi_X(t) + \phi_Y(t)$. + \end{itemize} +\end{fact} +\begin{proof} + We have + \begin{IEEEeqnarray*}{rCl} + \phi_{a X + b}(t) &=& \bE[e^{\i t (aX + b)}}]\\ + &=& e^{\i t b} \bE[e^{\i t a X}]\\ + &=& e^{\i t b} \phi_X(\frac{t}{a}). + \end{IEEEeqnarray*} + Furthermore + \begin{IEEEeqnarray*}{rCl} + \phi_{X + Y}(t) &=& \bE[e^{\i t (X + Y)}]\\ + &=& \bE[e^{\i t X}] \bE[e^{\i t Y}]\\ + &=& \phi_X(t) \phi_Y(t). + \end{IEEEeqnarray*} +\end{proof} \begin{remark} Suppose $(\Omega, \cF, \bP)$ is an arbitrary probability space and diff --git a/inputs/lecture_10.tex b/inputs/lecture_10.tex index bc764fb..4f89fe7 100644 --- a/inputs/lecture_10.tex +++ b/inputs/lecture_10.tex @@ -1,7 +1,5 @@ \lecture{10}{2023-05-09}{} -% RECAP - First, we will prove some of the most important facts about Fourier transforms. We consider $(\R, \cB(\R))$. diff --git a/inputs/lecture_23.tex b/inputs/lecture_23.tex index 41b3763..50cf647 100644 --- a/inputs/lecture_23.tex +++ b/inputs/lecture_23.tex @@ -93,7 +93,13 @@ In this lecture we recall the most important point from the lecture. \item Non-examples: $(\delta_n)_n$ \item How does one prove weak convergence? How does one write this down in a clear way? - % TODO + \begin{itemize} + \item \autoref{lec10_thm1}, + \item Levy's continuity theorem + \ref{levycontinuity}, + \item Generalization of Levy's continuity theorem + \ref{genlevycontinuity} + \end{itemize} \end{itemize} \paragraph{Convolution} @@ -104,7 +110,6 @@ In this lecture we recall the most important point from the lecture. \end{itemize} - \subsubsubsection{CLT} \begin{itemize} \item Statement of the CLT