s21-algebra-1/2021_Algebra_I.tex

53 lines
1.3 KiB
TeX
Raw Normal View History

2022-02-16 00:33:16 +01:00
\documentclass[10pt,ngerman,a4paper, fancyfoot, git]{mkessler-script}
\course{Algebra I}
2022-02-16 01:10:56 +01:00
\lecturer{Prof.~Dr.~Jens Franke}
\author{Josia Pietsch}
2022-02-16 00:33:16 +01:00
2022-02-16 01:19:05 +01:00
\title{title}
2022-02-16 01:10:56 +01:00
\usepackage{algebra}
2022-02-16 00:33:16 +01:00
\begin{document}
\maketitle
\cleardoublepage
\tableofcontents
\cleardoublepage
\begin{warning}
This is not an official script!
This document was written in preparation for the oral exam. It mostly follows the way \textsc{Prof. Franke} presented the material in his lecture rather closely.
There are probably errors.
\end{warning}
\noindent The \LaTeX template by \textsc{Maximilian Kessler} is published under the MIT-License and can be obtained from \url{https://github.com/kesslermaximilian/LatexPackages}. % TODO
\newline
2022-02-16 01:12:27 +01:00
\noindent $\mathfrak{k}$ is {\color{red} always} an algebraically closed field and $\mathfrak{k}^n$ is equipped with the Zariski-topology.
2022-02-16 01:13:05 +01:00
Fields which are not assumed to be algebraically closed have been renamed (usually to $\mathfrak{l}$).
\pagebreak
2022-02-16 02:18:00 +01:00
\section{Finiteness conditions}
2022-02-16 02:31:15 +01:00
\input{inputs/finiteness_conditions}
2022-02-16 02:18:00 +01:00
\section{The Nullstellensatz and the Zariski topology}
2022-02-16 02:31:15 +01:00
\input{inputs/nullstellensatz_and_zariski_topology}
% Lecture 11
2022-02-16 02:18:00 +01:00
\section{Projective spaces}
2022-02-16 02:31:15 +01:00
\input{inputs/projective_spaces}
% Lecture 13
2022-02-16 02:18:00 +01:00
\section{Varieties}
2022-02-16 02:31:15 +01:00
\input{inputs/varieties}
2022-02-16 02:34:17 +01:00
\iffalse
\section{Übersicht}
\input{inputs/uebersicht}
\fi
2022-02-16 00:33:16 +01:00
\end{document}