2022-02-16 00:33:16 +01:00
\documentclass [10pt,ngerman,a4paper, fancyfoot, git] { mkessler-script}
\course { Algebra I}
2022-02-16 01:10:56 +01:00
\lecturer { Prof.~Dr.~Jens Franke}
\author { Josia Pietsch}
2022-02-16 00:33:16 +01:00
2022-02-16 01:19:05 +01:00
\title { title}
2022-02-16 01:10:56 +01:00
\usepackage { algebra}
2022-02-16 00:33:16 +01:00
\begin { document}
\maketitle
\cleardoublepage
\tableofcontents
\cleardoublepage
2022-02-16 01:07:11 +01:00
\begin { warning}
This is not an official script!
This document was written in preparation for the oral exam. It mostly follows the way \textsc { Prof. Franke} presented the material in his lecture rather closely.
There are probably errors.
\end { warning}
\noindent The \LaTeX template by \textsc { Maximilian Kessler} is published under the MIT-License and can be obtained from \url { https://github.com/kesslermaximilian/LatexPackages} . % TODO
\newline
2022-02-16 01:12:27 +01:00
\noindent $ \mathfrak { k } $ is { \color { red} always} an algebraically closed field and $ \mathfrak { k } ^ n $ is equipped with the Zariski-topology.
2022-02-16 01:13:05 +01:00
Fields which are not assumed to be algebraically closed have been renamed (usually to $ \mathfrak { l } $ ).
2022-02-16 01:07:11 +01:00
\pagebreak
2022-02-16 02:18:00 +01:00
\section { Finiteness conditions}
2022-02-16 02:31:15 +01:00
\input { inputs/finiteness_ conditions}
2022-02-16 01:07:11 +01:00
2022-02-16 02:18:00 +01:00
\section { The Nullstellensatz and the Zariski topology}
2022-02-16 02:31:15 +01:00
\input { inputs/nullstellensatz_ and_ zariski_ topology}
2022-02-16 01:07:11 +01:00
% Lecture 11
2022-02-16 02:18:00 +01:00
\section { Projective spaces}
2022-02-16 02:31:15 +01:00
\input { inputs/projective_ spaces}
2022-02-16 01:07:11 +01:00
% Lecture 13
2022-02-16 02:18:00 +01:00
\section { Varieties}
2022-02-16 02:31:15 +01:00
\input { inputs/varieties}
2022-02-16 01:07:11 +01:00
2022-02-16 00:33:16 +01:00
\end { document}