Maximilian Keßler
a93601c997
We now only use relative imports for files in the same directory Also, only modules are imported, never classes/functions etc Furthermore, main methods in package files have been removed, since they do not belong there
372 lines
16 KiB
Python
372 lines
16 KiB
Python
import copy
|
|
from typing import Optional, Tuple
|
|
|
|
from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, get_model, Equals, GE, NotEquals, Int
|
|
from pysmt.typing import INT
|
|
|
|
from hanabi import logger
|
|
from hanabi import constants
|
|
from hanabi import hanab_game
|
|
|
|
|
|
# literals to model game as sat instance to check for feasibility
|
|
# variants 'throw it in a hole not handled', 'clue starved' and 'up or down' currently not handled
|
|
class Literals():
|
|
# num_suits is total number of suits, i.e. also counts the dark suits
|
|
# default distribution among all suits is assumed
|
|
def __init__(self, instance: hanab_game.HanabiInstance):
|
|
# clues[m][i] == "after move m we have i clues", in clue starved, this counts half clues
|
|
self.clues = {
|
|
-1: Int(16 if instance.clue_starved else 8) # we have 8 clues after turn
|
|
, **{
|
|
m: Symbol('m{}clues'.format(m), INT)
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
self.pace = {
|
|
-1: Int(instance.initial_pace)
|
|
, **{
|
|
m: Symbol('m{}pace'.format(m), INT)
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
# strikes[m][i] == "after move m we have at least i strikes"
|
|
self.strikes = {
|
|
-1: {i: Bool(i == 0) for i in range(0, instance.num_strikes + 1)} # no strikes when we start
|
|
, **{
|
|
m: {
|
|
0: Bool(True),
|
|
**{s: Symbol('m{}strikes{}'.format(m, s)) for s in range(1, instance.num_strikes)},
|
|
instance.num_strikes: Bool(False)
|
|
# never so many clues that we lose. Implicitly forbids striking out
|
|
}
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
# extraturn[m] = "turn m is a move part of the extra round or a dummy turn"
|
|
self.extraround = {
|
|
-1: Bool(False)
|
|
, **{
|
|
m: Bool(False) if m < instance.draw_pile_size else Symbol('m{}extra'.format(m))
|
|
# it takes at least as many turns as cards in the draw pile to start the extra round
|
|
for m in range(0, instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
# dummyturn[m] = "turn m is a dummy nurn and not actually part of the game"
|
|
self.dummyturn = {
|
|
-1: Bool(False)
|
|
, **{
|
|
m: Bool(False) if m < instance.draw_pile_size + instance.num_players else Symbol('m{}dummy'.format(m))
|
|
for m in range(0, instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
# draw[m][i] == "at move m we play/discard deck[i]"
|
|
self.discard = {
|
|
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(instance.deck_size)}
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
|
|
# draw[m][i] == "at move m we draw deck card i"
|
|
self.draw = {
|
|
-1: {i: Bool(i == instance.num_dealt_cards - 1) for i in
|
|
range(instance.num_dealt_cards - 1, instance.deck_size)}
|
|
, **{
|
|
m: {
|
|
instance.num_dealt_cards - 1: Bool(False),
|
|
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(instance.num_dealt_cards, instance.deck_size)}
|
|
}
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
# strike[m] = "at move m we get a strike"
|
|
self.strike = {
|
|
-1: Bool(False)
|
|
, **{
|
|
m: Symbol('m{}newstrike'.format(m))
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
# progress[m][card = (suitIndex, rank)] == "after move m we have played in suitIndex up to rank"
|
|
self.progress = {
|
|
-1: {(s, r): Bool(r == 0) for s in range(0, instance.num_suits) for r in range(0, 6)}
|
|
# at start, have only played rank zero
|
|
, **{
|
|
m: {
|
|
**{(s, 0): Bool(True) for s in range(0, instance.num_suits)},
|
|
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, instance.num_suits) for r in
|
|
range(1, 6)}
|
|
}
|
|
for m in range(instance.max_winning_moves)
|
|
}
|
|
}
|
|
|
|
## Utility variables
|
|
|
|
# discard_any[m] == "at move m we play/discard a card"
|
|
self.discard_any = {m: Symbol('m{}discard_any'.format(m)) for m in range(instance.max_winning_moves)}
|
|
|
|
# draw_any[m] == "at move m we draw a card"
|
|
self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(instance.max_winning_moves)}
|
|
|
|
# play[m] == "at move m we play a card"
|
|
self.play = {m: Symbol('m{}play'.format(m)) for m in range(instance.max_winning_moves)}
|
|
|
|
# play5[m] == "at move m we play a 5"
|
|
self.play5 = {m: Symbol('m{}play5'.format(m)) for m in range(instance.max_winning_moves)}
|
|
|
|
# incr_clues[m] == "at move m we obtain a clue"
|
|
self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(instance.max_winning_moves)}
|
|
|
|
|
|
def solve_sat(starting_state: hanab_game.GameState | hanab_game.HanabiInstance, min_pace: Optional[int] = 0) -> Tuple[
|
|
bool, Optional[hanab_game.GameState]]:
|
|
if isinstance(starting_state, hanab_game.HanabiInstance):
|
|
instance = starting_state
|
|
game_state = hanab_game.GameState(instance)
|
|
elif isinstance(starting_state, hanab_game.GameState):
|
|
instance = starting_state.instance
|
|
game_state = starting_state
|
|
else:
|
|
raise ValueError("Bad argument type")
|
|
|
|
ls = Literals(instance)
|
|
|
|
##### setup of initial game state
|
|
|
|
# properties used later to model valid moves
|
|
|
|
starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands]
|
|
first_turn = len(game_state.actions)
|
|
|
|
if isinstance(starting_state, hanab_game.GameState):
|
|
# have to set additional variables
|
|
|
|
# set initial clues
|
|
for i in range(0, 10):
|
|
ls.clues[first_turn - 1] = Int(game_state.clues)
|
|
|
|
# set initial pace
|
|
ls.pace[first_turn - 1] = Int(game_state.pace)
|
|
|
|
# set initial strikes
|
|
for i in range(0, instance.num_strikes + 1):
|
|
ls.strikes[first_turn - 1][i] = Bool(i <= game_state.strikes)
|
|
|
|
# check if extraround has started (usually not)
|
|
ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players)
|
|
ls.dummyturn[first_turn - 1] = Bool(False)
|
|
|
|
# set recent draws: important to model progress
|
|
# we just pretend that the last card drawn was in fact drawn last turn,
|
|
# regardless of when it was actually drawn
|
|
for neg_turn in range(1, min(9, first_turn + 2)):
|
|
for i in range(instance.num_players * instance.hand_size, instance.deck_size):
|
|
ls.draw[first_turn - neg_turn][i] = Bool(neg_turn == 1 and i == game_state.progress - 1)
|
|
# forbid re-drawing of the last card drawn
|
|
for m in range(first_turn, instance.max_winning_moves):
|
|
ls.draw[m][game_state.progress - 1] = Bool(False)
|
|
|
|
# model initial progress
|
|
for s in range(0, game_state.num_suits):
|
|
for r in range(0, 6):
|
|
ls.progress[first_turn - 1][s, r] = Bool(r <= game_state.stacks[s])
|
|
|
|
### Now, model all valid moves
|
|
|
|
valid_move = lambda m: And(
|
|
# in dummy turns, nothing can be discarded
|
|
Implies(ls.dummyturn[m], Not(ls.discard_any[m])),
|
|
|
|
# definition of discard_any
|
|
Iff(ls.discard_any[m], Or(ls.discard[m][i] for i in range(instance.deck_size))),
|
|
|
|
# definition of draw_any
|
|
Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size))),
|
|
|
|
# ls.draw implies ls.discard (and converse true before the ls.extraround)
|
|
Implies(ls.draw_any[m], ls.discard_any[m]),
|
|
Implies(ls.discard_any[m], Or(ls.extraround[m], ls.draw_any[m])),
|
|
|
|
# ls.play requires ls.discard
|
|
Implies(ls.play[m], ls.discard_any[m]),
|
|
|
|
# definition of ls.play5
|
|
Iff(ls.play5[m],
|
|
And(ls.play[m], Or(ls.discard[m][i] for i in range(instance.deck_size) if instance.deck[i].rank == 5))),
|
|
|
|
# definition of ls.incr_clues
|
|
Iff(ls.incr_clues[m],
|
|
And(ls.discard_any[m], NotEquals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)),
|
|
Implies(ls.play[m], ls.play5[m]))),
|
|
|
|
# change of ls.clues
|
|
Implies(And(Not(ls.discard_any[m]), Not(ls.dummyturn[m])),
|
|
Equals(ls.clues[m], ls.clues[m - 1] - (2 if instance.clue_starved else 1))),
|
|
Implies(ls.incr_clues[m], Equals(ls.clues[m], ls.clues[m - 1] + 1)),
|
|
Implies(And(Or(ls.discard_any[m], ls.dummyturn[m]), Not(ls.incr_clues[m])),
|
|
Equals(ls.clues[m], ls.clues[m - 1])),
|
|
|
|
# change of pace
|
|
Implies(And(ls.discard_any[m], Or(ls.strike[m], Not(ls.play[m]))), Equals(ls.pace[m], ls.pace[m - 1] - 1)),
|
|
Implies(Or(Not(ls.discard_any[m]), And(Not(ls.strike[m]), ls.play[m])), Equals(ls.pace[m], ls.pace[m - 1])),
|
|
|
|
# pace is nonnegative
|
|
GE(ls.pace[m], Int(min_pace)),
|
|
|
|
## more than 8 clues not allowed, ls.discarding produces a strike
|
|
# Note that this means that we will never strike while not at 8 clues.
|
|
# It's easy to see that if there is any solution to the instance, then there is also one where we only strike at 8 clues
|
|
# (or not at all) -> Just strike later if neccessary
|
|
# So, we decrease the solution space with this formulation, but do not change whether it's empty or not
|
|
Iff(ls.strike[m],
|
|
And(ls.discard_any[m], Not(ls.play[m]), Equals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)))),
|
|
|
|
# change of strikes
|
|
*[Iff(ls.strikes[m][i], Or(ls.strikes[m - 1][i], And(ls.strikes[m - 1][i - 1], ls.strike[m]))) for i in
|
|
range(1, instance.num_strikes + 1)],
|
|
|
|
# less than 0 clues not allowed
|
|
Implies(Not(ls.discard_any[m]), Or(GE(ls.clues[m - 1], Int(1)), ls.dummyturn[m])),
|
|
|
|
# we can only draw card i if the last ls.drawn card was i-1
|
|
*[Implies(ls.draw[m][i], Or(
|
|
And(ls.draw[m0][i - 1], *[Not(ls.draw_any[m1]) for m1 in range(m0 + 1, m)]) for m0 in
|
|
range(max(first_turn - 1, m - 9), m))) for i in range(game_state.progress, instance.deck_size)],
|
|
|
|
# we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula)
|
|
AtMostOne(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size)),
|
|
|
|
# we can only discard a card if we drew it earlier...
|
|
*[Implies(ls.discard[m][i],
|
|
Or(ls.draw[m0][i] for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players)))
|
|
for i in range(game_state.progress, instance.deck_size)],
|
|
|
|
# ...or if it was part of the initial hand
|
|
*[Not(ls.discard[m][i]) for i in range(0, game_state.progress) if
|
|
i not in starting_hands[m % instance.num_players]],
|
|
|
|
# we can only discard a card if we did not discard it yet
|
|
*[Implies(ls.discard[m][i], And(
|
|
Not(ls.discard[m0][i]) for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players)))
|
|
for i in range(instance.deck_size)],
|
|
|
|
# we can only discard at most one card (FIXME: avoid quadratic formula)
|
|
AtMostOne(ls.discard[m][i] for i in range(instance.deck_size)),
|
|
|
|
# we can only play a card if it matches the progress
|
|
*[Implies(
|
|
And(ls.discard[m][i], ls.play[m]),
|
|
And(
|
|
Not(ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank]),
|
|
ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank - 1]
|
|
)
|
|
)
|
|
for i in range(instance.deck_size)
|
|
],
|
|
|
|
# change of progress
|
|
*[
|
|
Iff(
|
|
ls.progress[m][s, r],
|
|
Or(
|
|
ls.progress[m - 1][s, r],
|
|
And(ls.play[m], Or(ls.discard[m][i]
|
|
for i in range(0, instance.deck_size)
|
|
if instance.deck[i] == hanab_game.DeckCard(s, r)))
|
|
)
|
|
)
|
|
for s in range(0, instance.num_suits)
|
|
for r in range(1, 6)
|
|
],
|
|
|
|
# extra round bool
|
|
Iff(ls.extraround[m], Or(ls.extraround[m - 1], ls.draw[m - 1][instance.deck_size - 1])),
|
|
|
|
# dummy turn bool
|
|
*[Iff(ls.dummyturn[m], Or(ls.dummyturn[m - 1], ls.draw[m - 1 - instance.num_players][instance.deck_size - 1]))
|
|
for i in range(0, 1) if m >= instance.num_players]
|
|
)
|
|
|
|
win = And(
|
|
# maximum progress at each color
|
|
*[ls.progress[instance.max_winning_moves - 1][s, 5] for s in range(0, instance.num_suits)],
|
|
|
|
# played every color/value combination (NOTE: redundant, but makes solving faster)
|
|
*[
|
|
Or(
|
|
And(ls.discard[m][i], ls.play[m])
|
|
for m in range(first_turn, instance.max_winning_moves)
|
|
for i in range(instance.deck_size)
|
|
if game_state.deck[i] == hanab_game.DeckCard(s, r)
|
|
)
|
|
for s in range(0, instance.num_suits)
|
|
for r in range(1, 6)
|
|
if r > game_state.stacks[s]
|
|
]
|
|
)
|
|
|
|
constraints = And(*[valid_move(m) for m in range(first_turn, instance.max_winning_moves)], win)
|
|
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
|
|
|
|
model = get_model(constraints)
|
|
if model:
|
|
log_model(model, game_state, ls)
|
|
solution = evaluate_model(model, copy.deepcopy(game_state), ls)
|
|
return True, solution
|
|
else:
|
|
# conj = list(conjunctive_partition(constraints))
|
|
# print('statements: {}'.format(len(conj)))
|
|
# ucore = get_unsat_core(conj)
|
|
# print('unsat core size: {}'.format(len(ucore)))
|
|
# for f in ucore:
|
|
# print(f.serialize())
|
|
return False, None
|
|
|
|
|
|
def log_model(model, cur_game_state, ls: Literals):
|
|
deck = cur_game_state.deck
|
|
first_turn = len(cur_game_state.actions)
|
|
if first_turn > 0:
|
|
logger.debug('[print_model] Note: Omitting first {} turns, since they were fixed already.'.format(first_turn))
|
|
for m in range(first_turn, cur_game_state.instance.max_winning_moves):
|
|
logger.debug('=== move {} ==='.format(m))
|
|
logger.debug('clues: {}'.format(model.get_py_value(ls.clues[m])))
|
|
logger.debug('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i])))
|
|
logger.debug('draw: ' + ', '.join(
|
|
'{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, cur_game_state.instance.deck_size) if
|
|
model.get_py_value(ls.draw[m][i])))
|
|
logger.debug('discard: ' + ', '.join(
|
|
'{}: {}'.format(i, deck[i]) for i in range(cur_game_state.instance.deck_size) if
|
|
model.get_py_value(ls.discard[m][i])))
|
|
logger.debug('pace: {}'.format(model.get_py_value(ls.pace[m])))
|
|
for s in range(0, cur_game_state.instance.num_suits):
|
|
logger.debug('progress {}: '.format(constants.COLOR_INITIALS[s]) + ''.join(
|
|
str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
|
|
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
|
|
logger.debug(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m])))
|
|
|
|
|
|
# given the initial game state and the model found by the SAT solver,
|
|
# evaluates the model to produce a full game history
|
|
def evaluate_model(model, cur_game_state: hanab_game.GameState, ls: Literals) -> hanab_game.GameState:
|
|
for m in range(len(cur_game_state.actions), cur_game_state.instance.max_winning_moves):
|
|
if model.get_py_value(ls.dummyturn[m]) or cur_game_state.is_over():
|
|
break
|
|
if model.get_py_value(ls.discard_any[m]):
|
|
card_idx = next(
|
|
i for i in range(0, cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i]))
|
|
if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]):
|
|
cur_game_state.play(card_idx)
|
|
else:
|
|
cur_game_state.discard(card_idx)
|
|
else:
|
|
cur_game_state.clue()
|
|
|
|
return cur_game_state
|