Refactor imports, remove code in imported files
We now only use relative imports for files in the same directory Also, only modules are imported, never classes/functions etc Furthermore, main methods in package files have been removed, since they do not belong there
This commit is contained in:
parent
6ae72a4b03
commit
a93601c997
16 changed files with 441 additions and 511 deletions
|
@ -1 +1 @@
|
|||
from .database import cur, conn
|
||||
from .database import cur, conn
|
||||
|
|
|
@ -12,7 +12,7 @@ cur = conn.cursor()
|
|||
# populate_static_tables()
|
||||
|
||||
|
||||
class Game():
|
||||
class Game:
|
||||
def __init__(self, info=None):
|
||||
self.id = -1
|
||||
self.num_players = -1
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* Database schema for the tables storing information on available hanab.live variants, suits and colors */
|
||||
|
||||
/* Available suits. The associated id is arbitrary upon initial generation, but fixed for referentiability */
|
||||
/* Available suits. The associated id is arbitrary upon initial generation, but fixed afterwards for identification */
|
||||
DROP TABLE IF EXISTS suits CASCADE;
|
||||
CREATE TABLE suits (
|
||||
id SERIAL PRIMARY KEY,
|
||||
|
@ -27,7 +27,7 @@ CREATE TABLE suits (
|
|||
);
|
||||
CREATE INDEX suits_name_idx ON suits (name);
|
||||
|
||||
/* Available color clues. The indexing is arbitrary upon initial generation, but fixed for referentiability */
|
||||
/* Available color clues. The indexing is arbitrary upon initial generation, but fixed afterwards for identification */
|
||||
DROP TABLE IF EXISTS colors CASCADE;
|
||||
CREATE TABLE colors (
|
||||
id SERIAL PRIMARY KEY,
|
||||
|
@ -99,7 +99,7 @@ CREATE TABLE variants (
|
|||
*/
|
||||
special_rank_ranks SMALLINT NOT NULL DEFAULT 1,
|
||||
/**
|
||||
Encodes how cards of the special rank (if present) are touched by colorss,
|
||||
Encodes how cards of the special rank (if present) are touched by colors,
|
||||
in the same manner how we encoded in @table suits
|
||||
*/
|
||||
special_rank_colors SMALLINT NOT NULL DEFAULT 1,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Optional, List
|
||||
from typing import Optional, List, Generator
|
||||
from enum import Enum
|
||||
from termcolor import colored
|
||||
|
||||
|
@ -30,7 +30,7 @@ class DeckCard:
|
|||
return 1000 * self.suitIndex + self.rank
|
||||
|
||||
|
||||
def pp_deck(deck: List[DeckCard]) -> str:
|
||||
def pp_deck(deck: Generator[DeckCard, None, None]) -> str:
|
||||
return "[" + ", ".join(card.colorize() for card in deck) + "]"
|
||||
|
||||
|
|
@ -4,10 +4,10 @@ import argparse
|
|||
|
||||
import verboselogs
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi.live.check_game import check_game
|
||||
from hanabi.live.download_data import detailed_export_game
|
||||
from hanabi.live.compress import link
|
||||
from hanabi import logger, logger_manager
|
||||
from hanabi.live import check_game
|
||||
from hanabi.live import download_data
|
||||
from hanabi.live import compress
|
||||
|
||||
"""
|
||||
init db + populate tables
|
||||
|
@ -39,16 +39,16 @@ def add_analyze_subparser(subparsers):
|
|||
|
||||
def analyze_game(game_id: int, download: bool = False):
|
||||
if download:
|
||||
detailed_export_game(game_id)
|
||||
download_data.detailed_export_game(game_id)
|
||||
logger.info('Analyzing game {}'.format(game_id))
|
||||
turn, sol = check_game(game_id)
|
||||
turn, sol = check_game.check_game(game_id)
|
||||
if turn == 0:
|
||||
logger.info('Instance is unfeasible')
|
||||
else:
|
||||
logger.info('Game was first lost after {} turns.'.format(turn))
|
||||
logger.info(
|
||||
'A replay achieving perfect score from the previous turn onwards is: {}#{}'
|
||||
.format(link(sol), turn)
|
||||
.format(compress.link(sol), turn)
|
||||
)
|
||||
|
||||
|
||||
|
@ -66,8 +66,7 @@ def main_parser() -> argparse.ArgumentParser:
|
|||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def hanabi_cli():
|
||||
args = main_parser().parse_args()
|
||||
switcher = {
|
||||
'analyze': analyze_game
|
||||
|
@ -78,3 +77,7 @@ if __name__ == "__main__":
|
|||
method_args.pop('command')
|
||||
method_args.pop('verbose')
|
||||
switcher[args.command](**method_args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
hanabi_cli()
|
|
@ -1,12 +1,12 @@
|
|||
import copy
|
||||
from typing import Tuple
|
||||
|
||||
from hanabi.database import conn
|
||||
from hanabi.live.compress import decompress_deck, decompress_actions, link
|
||||
from hanabi.game import GameState
|
||||
from hanabi.live.hanab_live import HanabLiveInstance, HanabLiveGameState
|
||||
from hanabi.solvers.sat import solve_sat
|
||||
from hanabi import logger
|
||||
from hanabi import database
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import hanab_live
|
||||
from hanabi.live import compress
|
||||
from hanabi.solvers import sat
|
||||
|
||||
|
||||
# returns minimal number T of turns (from game) after which instance was infeasible
|
||||
|
@ -16,9 +16,9 @@ from hanabi import logger
|
|||
# returns 1 if instance is feasible but first turn is suboptimal
|
||||
# ...
|
||||
# # turns + 1 if the final state is still winning
|
||||
def check_game(game_id: int) -> Tuple[int, GameState]:
|
||||
def check_game(game_id: int) -> Tuple[int, hanab_game.GameState]:
|
||||
logger.debug("Analysing game {}".format(game_id))
|
||||
with conn.cursor() as cur:
|
||||
with database.conn.cursor() as cur:
|
||||
cur.execute("SELECT games.num_players, deck, actions, score, games.variant_id FROM games "
|
||||
"INNER JOIN seeds ON seeds.seed = games.seed "
|
||||
"WHERE games.id = (%s)",
|
||||
|
@ -28,25 +28,25 @@ def check_game(game_id: int) -> Tuple[int, GameState]:
|
|||
if res is None:
|
||||
raise ValueError("No game associated with id {} in database.".format(game_id))
|
||||
(num_players, compressed_deck, compressed_actions, score, variant_id) = res
|
||||
deck = decompress_deck(compressed_deck)
|
||||
actions = decompress_actions(compressed_actions)
|
||||
deck = compress.decompress_deck(compressed_deck)
|
||||
actions = compress.decompress_actions(compressed_actions)
|
||||
|
||||
instance = HanabLiveInstance(deck, num_players, variant_id=variant_id)
|
||||
instance = hanab_live.HanabLiveInstance(deck, num_players, variant_id=variant_id)
|
||||
|
||||
# check if the instance is already won
|
||||
if instance.max_score == score:
|
||||
game = HanabLiveGameState(instance)
|
||||
game = hanab_live.HanabLiveGameState(instance)
|
||||
for action in actions:
|
||||
game.make_action(action)
|
||||
# instance has been won, nothing to compute here
|
||||
return len(actions) + 1, game
|
||||
|
||||
# first, check if the instance itself is feasible:
|
||||
game = HanabLiveGameState(instance)
|
||||
solvable, solution = solve_sat(game)
|
||||
game = hanab_live.HanabLiveGameState(instance)
|
||||
solvable, solution = sat.solve_sat(game)
|
||||
if not solvable:
|
||||
return 0, solution
|
||||
logger.verbose("Instance {} is feasible after 0 turns: {}".format(game_id, link(solution)))
|
||||
logger.verbose("Instance {} is feasible after 0 turns: {}".format(game_id, compress.link(solution)))
|
||||
|
||||
# store lower and upper bounds of numbers of turns after which we know the game was feasible / infeasible
|
||||
solvable_turn = 0
|
||||
|
@ -59,13 +59,13 @@ def check_game(game_id: int) -> Tuple[int, GameState]:
|
|||
for a in range(solvable_turn, try_turn):
|
||||
try_game.make_action(actions[a])
|
||||
logger.debug("Checking if instance {} is feasible after {} turns.".format(game_id, try_turn))
|
||||
solvable, potential_sol = solve_sat(try_game)
|
||||
solvable, potential_sol = sat.solve_sat(try_game)
|
||||
if solvable:
|
||||
solution = potential_sol
|
||||
game = try_game
|
||||
solvable_turn = try_turn
|
||||
logger.verbose("Instance {} is feasible after {} turns: {}#{}"
|
||||
.format(game_id, solvable_turn, link(solution), solvable_turn + 1))
|
||||
.format(game_id, solvable_turn, compress.link(solution), solvable_turn + 1))
|
||||
else:
|
||||
unsolvable_turn = try_turn
|
||||
logger.verbose("Instance {} is not feasible after {} turns.".format(game_id, unsolvable_turn))
|
||||
|
|
|
@ -1,191 +1,190 @@
|
|||
#! /bin/python3
|
||||
import sys
|
||||
import more_itertools
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
from hanabi.game import DeckCard, ActionType, Action, GameState, HanabiInstance
|
||||
from hanab_live import HanabLiveGameState, HanabLiveInstance
|
||||
import more_itertools
|
||||
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import hanab_live
|
||||
|
||||
# use same BASE62 as on hanab.live to encode decks
|
||||
BASE62 = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||||
BASE62 = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
|
||||
|
||||
# Helper method, iterate over chunks of length n in a string
|
||||
def chunks(s: str, n: int):
|
||||
for i in range(0, len(s), n):
|
||||
yield s[i:i+n]
|
||||
yield s[i:i + n]
|
||||
|
||||
|
||||
# exception thrown by decompression methods if parsing fails
|
||||
class InvalidFormatError(ValueError):
|
||||
pass
|
||||
pass
|
||||
|
||||
|
||||
def compress_actions(actions: List[Action], game_id=None) -> str:
|
||||
minType = 0
|
||||
maxType = 0
|
||||
def compress_actions(actions: List[hanab_game.Action]) -> str:
|
||||
min_type = 0
|
||||
max_type = 0
|
||||
if len(actions) != 0:
|
||||
minType = min(map(lambda a: a.type.value, actions))
|
||||
maxType = max(map(lambda a: a.type.value, actions))
|
||||
typeRange = maxType - minType + 1
|
||||
min_type = min(map(lambda a: a.type.value, actions))
|
||||
max_type = max(map(lambda a: a.type.value, actions))
|
||||
type_range = max_type - min_type + 1
|
||||
|
||||
def compress_action(action):
|
||||
## We encode action values with +1 to differentiate
|
||||
# We encode action values with +1 to differentiate
|
||||
# null (encoded 0) and 0 (encoded 1)
|
||||
value = 0 if action.value is None else action.value + 1
|
||||
if action.type == ActionType.VoteTerminate:
|
||||
# This is currently a hack, the actual format has a 10 here
|
||||
if action.type == hanab_game.ActionType.VoteTerminate:
|
||||
# This is currently a hack, the actual format has a 10 here,
|
||||
# but we cannot encode this
|
||||
value = 0
|
||||
try:
|
||||
a = BASE62[typeRange * value + (action.type.value - minType)]
|
||||
a = BASE62[type_range * value + (action.type.value - min_type)]
|
||||
b = BASE62[action.target]
|
||||
except IndexError as e:
|
||||
raise ValueError("Encoding action failed, value too large, found {}".format(value)) from e
|
||||
return a + b
|
||||
|
||||
return "{}{}{}".format(
|
||||
minType,
|
||||
maxType,
|
||||
''.join(map(compress_action, actions))
|
||||
min_type,
|
||||
max_type,
|
||||
''.join(map(compress_action, actions))
|
||||
)
|
||||
|
||||
|
||||
def decompress_actions(actions_str: str) -> List[Action]:
|
||||
def decompress_actions(actions_str: str) -> List[hanab_game.Action]:
|
||||
if not len(actions_str) >= 2:
|
||||
raise InvalidFormatError("min/max range not specified, found: {}".format(actions_str))
|
||||
try:
|
||||
minType = int(actions_str[0])
|
||||
maxType = int(actions_str[1])
|
||||
min_type = int(actions_str[0])
|
||||
max_type = int(actions_str[1])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"min/max range of actions not specified, expected two integers, found {}".format(actions_str[:2])
|
||||
"min/max range of actions not specified, expected two integers, found {}".format(actions_str[:2])
|
||||
) from e
|
||||
if not minType <= maxType:
|
||||
raise InvalidFormatError("min/max range illegal, found [{},{}]".format(minType, maxType))
|
||||
typeRange = maxType - minType + 1
|
||||
if not min_type <= max_type:
|
||||
raise InvalidFormatError("min/max range illegal, found [{},{}]".format(min_type, max_type))
|
||||
type_range = max_type - min_type + 1
|
||||
|
||||
if not len(actions_str) % 2 == 0:
|
||||
raise InvalidFormatError("Invalid action string length: Expected even number of characters")
|
||||
|
||||
for (index, char) in enumerate(actions_str[2:]):
|
||||
if not char in BASE62:
|
||||
if char not in BASE62:
|
||||
raise InvalidFormatError(
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
)
|
||||
|
||||
def decompress_action(index, action):
|
||||
def decompress_action(action_idx: int, action: str):
|
||||
try:
|
||||
action_type_value = (BASE62.index(action[0]) % typeRange) + minType
|
||||
action_type = ActionType(action_type_value)
|
||||
action_type_value = (BASE62.index(action[0]) % type_range) + min_type
|
||||
action_type = hanab_game.ActionType(action_type_value)
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"Invalid action type at action {}: Found {}, expected one of {}".format(
|
||||
index, action_type_value,
|
||||
[action_type.value for action_type in ActionType]
|
||||
)
|
||||
"Invalid action type at action {}: Found {}, expected one of {}".format(
|
||||
action_idx, action_type_value,
|
||||
[action_type.value for action_type in hanab_game.ActionType]
|
||||
)
|
||||
) from e
|
||||
## We encode values with +1 to differentiate null (encoded 0) and 0 (encoded 1)
|
||||
value = BASE62.index(action[0]) // typeRange - 1
|
||||
|
||||
# We encode values with +1 to differentiate null (encoded 0) and 0 (encoded 1)
|
||||
value = BASE62.index(action[0]) // type_range - 1
|
||||
if value == -1:
|
||||
value = None
|
||||
if action_type in [ActionType.Play, ActionType.Discard]:
|
||||
if action_type in [hanab_game.ActionType.Play, hanab_game.ActionType.Discard]:
|
||||
if value is not None:
|
||||
raise InvalidFormatError(
|
||||
"Invalid action value: Action at action index {} is Play/Discard, expected value None, found: {}".format(index, value)
|
||||
"Invalid action value: Action at action index {} is Play/Discard, expected value None, "
|
||||
"found: {}".format(action_idx, value)
|
||||
)
|
||||
target = BASE62.index(action[1])
|
||||
return Action(action_type, target, value)
|
||||
return hanab_game.Action(action_type, target, value)
|
||||
|
||||
return [decompress_action(idx, a) for (idx, a) in enumerate(chunks(actions_str[2:], 2))]
|
||||
|
||||
|
||||
def compress_deck(deck: List[DeckCard]) -> str:
|
||||
assert(len(deck) != 0)
|
||||
minRank = min(map(lambda c: c.rank, deck))
|
||||
maxRank = max(map(lambda c: c.rank, deck))
|
||||
rankRange = maxRank - minRank + 1
|
||||
def compress_deck(deck: List[hanab_game.DeckCard]) -> str:
|
||||
assert (len(deck) != 0)
|
||||
min_rank = min(map(lambda card: card.rank, deck))
|
||||
max_rank = max(map(lambda card: card.rank, deck))
|
||||
rank_range = max_rank - min_rank + 1
|
||||
|
||||
def compress_card(card):
|
||||
try:
|
||||
return BASE62[rankRange * card.suitIndex + (card.rank - minRank)]
|
||||
return BASE62[rank_range * card.suitIndex + (card.rank - min_rank)]
|
||||
except IndexError as e:
|
||||
raise InvalidFormatError(
|
||||
"Could not compress card, suit or rank too large. Found: {}".format(card)
|
||||
"Could not compress card, suit or rank too large. Found: {}".format(card)
|
||||
) from e
|
||||
|
||||
return "{}{}{}".format(
|
||||
minRank,
|
||||
maxRank,
|
||||
''.join(map(compress_card, deck))
|
||||
min_rank,
|
||||
max_rank,
|
||||
''.join(map(compress_card, deck))
|
||||
)
|
||||
|
||||
|
||||
def decompress_deck(deck_str: str) -> List[DeckCard]:
|
||||
def decompress_deck(deck_str: str) -> List[hanab_game.DeckCard]:
|
||||
if len(deck_str) < 2:
|
||||
raise InvalidFormatError("min/max rank range not specified, found: {}".format(deck_str))
|
||||
try:
|
||||
minRank = int(deck_str[0])
|
||||
maxRank = int(deck_str[1])
|
||||
min_rank = int(deck_str[0])
|
||||
max_rank = int(deck_str[1])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"min/max rank range not specified, expected two integers, found {}".format(deck_str[:2])
|
||||
"min/max rank range not specified, expected two integers, found {}".format(deck_str[:2])
|
||||
) from e
|
||||
if not maxRank >= minRank:
|
||||
if not max_rank >= min_rank:
|
||||
raise InvalidFormatError(
|
||||
"Invalid rank range, found [{},{}]".format(minRank, maxRank)
|
||||
"Invalid rank range, found [{},{}]".format(min_rank, max_rank)
|
||||
)
|
||||
rankRange = maxRank - minRank + 1
|
||||
rank_range = max_rank - min_rank + 1
|
||||
|
||||
for (index, char) in enumerate(deck_str[2:]):
|
||||
if not char in BASE62:
|
||||
if char not in BASE62:
|
||||
raise InvalidFormatError(
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
)
|
||||
|
||||
def decompress_card(card_char):
|
||||
index = BASE62.index(card_char)
|
||||
suitIndex = index // rankRange
|
||||
rank = index % rankRange + minRank
|
||||
return DeckCard(suitIndex, rank)
|
||||
encoded = BASE62.index(card_char)
|
||||
suit_index = encoded // rank_range
|
||||
rank = encoded % rank_range + min_rank
|
||||
return hanab_game.DeckCard(suit_index, rank)
|
||||
|
||||
return [decompress_card(c) for c in deck_str[2:]]
|
||||
return [decompress_card(card) for card in deck_str[2:]]
|
||||
|
||||
|
||||
# compresses a standard GameState object into hanab.live format
|
||||
# which can be used in json replay links
|
||||
# The GameState object has to be standard / fitting hanab.live variants,
|
||||
# otherwise compression is not possible
|
||||
def compress_game_state(state: Union[GameState, HanabLiveGameState]) -> str:
|
||||
var_id = -1
|
||||
if isinstance(state, HanabLiveGameState):
|
||||
def compress_game_state(state: Union[hanab_game.GameState, hanab_live.HanabLiveGameState]) -> str:
|
||||
if isinstance(state, hanab_live.HanabLiveGameState):
|
||||
var_id = state.instance.variant_id
|
||||
else:
|
||||
assert isinstance(state, GameState)
|
||||
var_id = HanabLiveInstance.select_standard_variant_id(state.instance)
|
||||
assert isinstance(state, hanab_game.GameState)
|
||||
var_id = hanab_live.HanabLiveInstance.select_standard_variant_id(state.instance)
|
||||
out = "{}{},{},{}".format(
|
||||
state.instance.num_players,
|
||||
compress_deck(state.instance.deck),
|
||||
compress_actions(state.actions),
|
||||
var_id
|
||||
)
|
||||
state.instance.num_players,
|
||||
compress_deck(state.instance.deck),
|
||||
compress_actions(state.actions),
|
||||
var_id
|
||||
)
|
||||
with_dashes = ''.join(more_itertools.intersperse("-", out, 20))
|
||||
return with_dashes
|
||||
|
||||
|
||||
def decompress_game_state(game_str: str) -> GameState:
|
||||
def decompress_game_state(game_str: str) -> hanab_game.GameState:
|
||||
game_str = game_str.replace("-", "")
|
||||
parts = game_str.split(",")
|
||||
if not len(parts) == 3:
|
||||
raise InvalidFormatError(
|
||||
"Expected 3 comma-separated parts of game, found {}".format(
|
||||
len(parts)
|
||||
)
|
||||
"Expected 3 comma-separated parts of game, found {}".format(
|
||||
len(parts)
|
||||
)
|
||||
)
|
||||
[players_deck, actions, variant_id] = parts
|
||||
if len(players_deck) == 0:
|
||||
|
@ -212,35 +211,14 @@ def decompress_game_state(game_str: str) -> GameState:
|
|||
except ValueError:
|
||||
raise ValueError("Expected variant id, found: {}".format(variant_id))
|
||||
|
||||
instance = HanabiInstance(deck, num_players)
|
||||
game = GameState(instance)
|
||||
|
||||
instance = hanab_game.HanabiInstance(deck, num_players)
|
||||
game = hanab_game.GameState(instance)
|
||||
|
||||
# TODO: game is not in consistent state
|
||||
game.actions = actions
|
||||
return game
|
||||
|
||||
|
||||
def link(game_state: GameState) -> str:
|
||||
def link(game_state: hanab_game.GameState) -> str:
|
||||
compressed = compress_game_state(game_state)
|
||||
return "https://hanab.live/shared-replay-json/{}".format(compressed)
|
||||
|
||||
|
||||
# add link method to GameState class
|
||||
GameState.link = link
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for arg in sys.argv[1:]:
|
||||
deck = decompress_deck(arg)
|
||||
c = compress_deck(deck)
|
||||
assert(c == arg)
|
||||
print(deck)
|
||||
|
||||
inst = HanabiInstance(deck, 5, variant_id = 32)
|
||||
game = GameState(inst)
|
||||
game.play(1)
|
||||
game.play(5)
|
||||
game.clue()
|
||||
print(game.link())
|
||||
|
||||
|
|
|
@ -3,11 +3,12 @@ from typing import Dict, Optional
|
|||
|
||||
import psycopg2.errors
|
||||
|
||||
from hanabi.live.site_api import get, api
|
||||
from hanabi.database.database import conn, cur
|
||||
from hanabi.live.compress import compress_deck, compress_actions, DeckCard, Action, InvalidFormatError
|
||||
from hanabi.live.variants import variant_id, variant_name
|
||||
from hanab_live import HanabLiveInstance, HanabLiveGameState
|
||||
from hanabi import hanab_game
|
||||
from hanabi.database import database
|
||||
from hanabi.live import site_api
|
||||
from hanabi.live import compress
|
||||
from hanabi.live import variants
|
||||
from hanabi.live import hanab_live
|
||||
|
||||
from hanabi import logger
|
||||
|
||||
|
@ -30,29 +31,29 @@ def detailed_export_game(game_id: int, score: Optional[int] = None, var_id: Opti
|
|||
|
||||
assert_msg = "Invalid response format from hanab.live while exporting game id {}".format(game_id)
|
||||
|
||||
game_json = get("export/{}".format(game_id))
|
||||
game_json = site_api.get("export/{}".format(game_id))
|
||||
assert game_json.get('id') == game_id, assert_msg
|
||||
|
||||
players = game_json.get('players', [])
|
||||
num_players = len(players)
|
||||
seed = game_json.get('seed', None)
|
||||
options = game_json.get('options', {})
|
||||
var_id = var_id or variant_id(options.get('variant', 'No Variant'))
|
||||
var_id = var_id or variants.variant_id(options.get('variant', 'No Variant'))
|
||||
deck_plays = options.get('deckPlays', False)
|
||||
one_extra_card = options.get('oneExtraCard', False)
|
||||
one_less_card = options.get('oneLessCard', False)
|
||||
all_or_nothing = options.get('allOrNothing', False)
|
||||
starting_player = options.get('startingPlayer', 0)
|
||||
actions = [Action.from_json(action) for action in game_json.get('actions', [])]
|
||||
deck = [DeckCard.from_json(card) for card in game_json.get('deck', None)]
|
||||
actions = [hanab_game.Action.from_json(action) for action in game_json.get('actions', [])]
|
||||
deck = [hanab_game.DeckCard.from_json(card) for card in game_json.get('deck', None)]
|
||||
|
||||
assert players != [], assert_msg
|
||||
assert seed is not None, assert_msg
|
||||
|
||||
if score is None:
|
||||
# need to play through the game once to find out its score
|
||||
game = HanabLiveGameState(
|
||||
HanabLiveInstance(
|
||||
game = hanab_live.HanabLiveGameState(
|
||||
hanab_live.HanabLiveInstance(
|
||||
deck, num_players, var_id,
|
||||
deck_plays=deck_plays,
|
||||
one_less_card=one_less_card,
|
||||
|
@ -67,18 +68,18 @@ def detailed_export_game(game_id: int, score: Optional[int] = None, var_id: Opti
|
|||
score = game.score
|
||||
|
||||
try:
|
||||
compressed_deck = compress_deck(deck)
|
||||
except InvalidFormatError:
|
||||
compressed_deck = compress.compress_deck(deck)
|
||||
except compress.InvalidFormatError:
|
||||
logger.error("Failed to compress deck while exporting game {}: {}".format(game_id, deck))
|
||||
raise
|
||||
try:
|
||||
compressed_actions = compress_actions(actions)
|
||||
except InvalidFormatError:
|
||||
compressed_actions = compress.compress_actions(actions)
|
||||
except compress.InvalidFormatError:
|
||||
logger.error("Failed to compress actions while exporting game {}".format(game_id))
|
||||
raise
|
||||
|
||||
if not seed_exists:
|
||||
cur.execute(
|
||||
database.cur.execute(
|
||||
"INSERT INTO seeds (seed, num_players, variant_id, deck)"
|
||||
"VALUES (%s, %s, %s, %s)"
|
||||
"ON CONFLICT (seed) DO NOTHING",
|
||||
|
@ -86,7 +87,7 @@ def detailed_export_game(game_id: int, score: Optional[int] = None, var_id: Opti
|
|||
)
|
||||
logger.debug("New seed {} imported.".format(seed))
|
||||
|
||||
cur.execute(
|
||||
database.cur.execute(
|
||||
"INSERT INTO games ("
|
||||
"id, num_players, starting_player, score, seed, variant_id, deck_plays, one_extra_card, one_less_card,"
|
||||
"all_or_nothing, actions"
|
||||
|
@ -115,9 +116,9 @@ def process_game_row(game: Dict, var_id):
|
|||
if any(v is None for v in [game_id, seed, num_players, score]):
|
||||
raise ValueError("Unknown response format on hanab.live")
|
||||
|
||||
cur.execute("SAVEPOINT seed_insert")
|
||||
database.cur.execute("SAVEPOINT seed_insert")
|
||||
try:
|
||||
cur.execute(
|
||||
database.cur.execute(
|
||||
"INSERT INTO games (id, seed, num_players, score, variant_id)"
|
||||
"VALUES"
|
||||
"(%s, %s ,%s ,%s ,%s)"
|
||||
|
@ -125,20 +126,20 @@ def process_game_row(game: Dict, var_id):
|
|||
(game_id, seed, num_players, score, var_id)
|
||||
)
|
||||
except psycopg2.errors.ForeignKeyViolation:
|
||||
cur.execute("ROLLBACK TO seed_insert")
|
||||
database.cur.execute("ROLLBACK TO seed_insert")
|
||||
detailed_export_game(game_id, score, var_id)
|
||||
cur.execute("RELEASE seed_insert")
|
||||
database.cur.execute("RELEASE seed_insert")
|
||||
logger.debug("Imported game {}".format(game_id))
|
||||
|
||||
|
||||
def download_games(var_id):
|
||||
name = variant_name(var_id)
|
||||
name = variants.variant_name(var_id)
|
||||
page_size = 100
|
||||
if name is None:
|
||||
raise ValueError("{} is not a known variant_id.".format(var_id))
|
||||
|
||||
url = "variants/{}".format(var_id)
|
||||
r = api(url, refresh=True)
|
||||
r = site_api.api(url, refresh=True)
|
||||
if not r:
|
||||
raise RuntimeError("Failed to download request from hanab.live")
|
||||
|
||||
|
@ -146,12 +147,12 @@ def download_games(var_id):
|
|||
if num_entries is None:
|
||||
raise ValueError("Unknown response format on hanab.live")
|
||||
|
||||
cur.execute(
|
||||
database.cur.execute(
|
||||
"SELECT COUNT(*) FROM games WHERE variant_id = %s AND id <= "
|
||||
"(SELECT COALESCE (last_game_id, 0) FROM variant_game_downloads WHERE variant_id = %s)",
|
||||
(var_id, var_id)
|
||||
)
|
||||
num_already_downloaded_games = cur.fetchone()[0]
|
||||
num_already_downloaded_games = database.cur.fetchone()[0]
|
||||
assert num_already_downloaded_games <= num_entries, "Database inconsistent, too many games present."
|
||||
next_page = num_already_downloaded_games // page_size
|
||||
last_page = (num_entries - 1) // page_size
|
||||
|
@ -171,7 +172,7 @@ def download_games(var_id):
|
|||
enrich_print=False
|
||||
) as bar:
|
||||
for page in range(next_page, last_page + 1):
|
||||
r = api(url + "?col[0]=0&page={}".format(page), refresh=page == last_page)
|
||||
r = site_api.api(url + "?col[0]=0&page={}".format(page), refresh=page == last_page)
|
||||
rows = r.get('rows', [])
|
||||
if page == next_page:
|
||||
rows = rows[num_already_downloaded_games % 100:]
|
||||
|
@ -180,11 +181,10 @@ def download_games(var_id):
|
|||
for row in rows:
|
||||
process_game_row(row, var_id)
|
||||
bar()
|
||||
cur.execute(
|
||||
database.cur.execute(
|
||||
"INSERT INTO variant_game_downloads (variant_id, last_game_id) VALUES"
|
||||
"(%s, %s)"
|
||||
"ON CONFLICT (variant_id) DO UPDATE SET last_game_id = EXCLUDED.last_game_id",
|
||||
(var_id, r['rows'][-1]['id'])
|
||||
)
|
||||
conn.commit()
|
||||
|
||||
database.conn.commit()
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
from typing import List
|
||||
|
||||
import hanabi
|
||||
from hanabi import hanab_game
|
||||
from hanabi import constants
|
||||
from hanabi.live.variants import Variant
|
||||
from hanabi.live import variants
|
||||
|
||||
|
||||
class HanabLiveInstance(hanabi.HanabiInstance):
|
||||
class HanabLiveInstance(hanab_game.HanabiInstance):
|
||||
def __init__(
|
||||
self,
|
||||
deck: List[hanabi.DeckCard],
|
||||
deck: List[hanab_game.DeckCard],
|
||||
num_players: int,
|
||||
variant_id: int,
|
||||
one_extra_card: bool = False,
|
||||
|
@ -24,10 +24,10 @@ class HanabLiveInstance(hanabi.HanabiInstance):
|
|||
|
||||
super().__init__(deck, num_players, hand_size=hand_size, *args, **kwargs)
|
||||
self.variant_id = variant_id
|
||||
self.variant = Variant.from_db(self.variant_id)
|
||||
self.variant = variants.Variant.from_db(self.variant_id)
|
||||
|
||||
@staticmethod
|
||||
def select_standard_variant_id(instance: hanabi.HanabiInstance):
|
||||
def select_standard_variant_id(instance: hanab_game.HanabiInstance):
|
||||
err_msg = "Hanabi instance not supported by hanab.live, cannot convert to HanabLiveInstance: "
|
||||
assert 3 <= instance.num_suits <= 6, \
|
||||
err_msg + "Illegal number of suits ({}) found, must be in range [3,6]".format(instance.num_suits)
|
||||
|
@ -40,40 +40,40 @@ class HanabLiveInstance(hanabi.HanabiInstance):
|
|||
return constants.VARIANT_IDS_STANDARD_DISTRIBUTIONS[instance.num_suits][instance.num_dark_suits]
|
||||
|
||||
|
||||
class HanabLiveGameState(hanabi.GameState):
|
||||
class HanabLiveGameState(hanab_game.GameState):
|
||||
def __init__(self, instance: HanabLiveInstance, starting_player: int = 0):
|
||||
super().__init__(instance, starting_player)
|
||||
self.instance: HanabLiveInstance = instance
|
||||
|
||||
def make_action(self, action):
|
||||
match action.type:
|
||||
case hanabi.ActionType.ColorClue | hanabi.ActionType.RankClue:
|
||||
case hanab_game.ActionType.ColorClue | hanab_game.ActionType.RankClue:
|
||||
assert(self.clues > 0)
|
||||
self.actions.append(action)
|
||||
self.clues -= self.instance.clue_increment
|
||||
self._make_turn()
|
||||
# TODO: could check that the clue specified is in fact legal
|
||||
case hanabi.ActionType.Play:
|
||||
case hanab_game.ActionType.Play:
|
||||
self.play(action.target)
|
||||
case hanabi.ActionType.Discard:
|
||||
case hanab_game.ActionType.Discard:
|
||||
self.discard(action.target)
|
||||
case hanabi.ActionType.EndGame | hanabi.ActionType.VoteTerminate:
|
||||
case hanab_game.ActionType.EndGame | hanab_game.ActionType.VoteTerminate:
|
||||
self.over = True
|
||||
|
||||
def _waste_clue(self) -> hanabi.Action:
|
||||
def _waste_clue(self) -> hanab_game.Action:
|
||||
for player in range(self.turn + 1, self.turn + self.num_players):
|
||||
for card in self.hands[player % self.num_players]:
|
||||
for rank in self.instance.variant.ranks:
|
||||
if self.instance.variant.rank_touches(card, rank):
|
||||
return hanabi.Action(
|
||||
hanabi.ActionType.RankClue,
|
||||
return hanab_game.Action(
|
||||
hanab_game.ActionType.RankClue,
|
||||
player % self.num_players,
|
||||
rank
|
||||
)
|
||||
for color in range(self.instance.variant.num_colors):
|
||||
if self.instance.variant.color_touches(card, color):
|
||||
return hanabi.Action(
|
||||
hanabi.ActionType.ColorClue,
|
||||
return hanab_game.Action(
|
||||
hanab_game.ActionType.ColorClue,
|
||||
player % self.num_players,
|
||||
color
|
||||
)
|
||||
|
|
|
@ -3,26 +3,26 @@ import pebble.concurrent
|
|||
import concurrent.futures
|
||||
|
||||
import traceback
|
||||
import alive_progress
|
||||
import threading
|
||||
import time
|
||||
|
||||
from hanabi.solvers.sat import solve_sat
|
||||
from hanabi.database.database import conn, cur
|
||||
from hanabi.live.download_data import detailed_export_game
|
||||
from alive_progress import alive_bar
|
||||
from hanabi.live.compress import decompress_deck, link
|
||||
from hanabi.game import HanabiInstance
|
||||
from threading import Lock
|
||||
from time import perf_counter
|
||||
from hanabi.solvers.greedy_solver import GameState, GreedyStrategy
|
||||
from hanabi import logger
|
||||
from hanabi.solvers.deck_analyzer import analyze, InfeasibilityReason
|
||||
from hanabi.live.variants import Variant
|
||||
from hanabi.solvers.sat import solve_sat
|
||||
from hanabi.database import database
|
||||
from hanabi.live import download_data
|
||||
from hanabi.live import compress
|
||||
from hanabi import hanab_game
|
||||
from hanabi.solvers import greedy_solver
|
||||
from hanabi.solvers import deck_analyzer
|
||||
from hanabi.live import variants
|
||||
|
||||
MAX_PROCESSES = 6
|
||||
|
||||
|
||||
def update_seeds_db():
|
||||
cur2 = conn.cursor()
|
||||
with conn.cursor() as cur:
|
||||
cur2 = database.conn.cursor()
|
||||
with database.conn.cursor() as cur:
|
||||
cur.execute("SELECT num_players, seed, variant_id from games;")
|
||||
for (num_players, seed, variant_id) in cur:
|
||||
cur2.execute("SELECT COUNT(*) from seeds WHERE seed = (%s);", (seed,))
|
||||
|
@ -34,47 +34,47 @@ def update_seeds_db():
|
|||
"(%s, %s, %s)",
|
||||
(seed, num_players, variant_id)
|
||||
)
|
||||
conn.commit()
|
||||
database.conn.commit()
|
||||
else:
|
||||
print("seed {} already found in DB".format(seed))
|
||||
|
||||
|
||||
def get_decks_of_seeds():
|
||||
cur2 = conn.cursor()
|
||||
cur.execute("SELECT seed, variant_id FROM seeds WHERE deck is NULL")
|
||||
for (seed, variant_id) in cur:
|
||||
cur2 = database.conn.cursor()
|
||||
database.cur.execute("SELECT seed, variant_id FROM seeds WHERE deck is NULL")
|
||||
for (seed, variant_id) in database.cur:
|
||||
cur2.execute("SELECT id FROM games WHERE seed = (%s) LIMIT 1", (seed,))
|
||||
(game_id,) = cur2.fetchone()
|
||||
logger.verbose("Exporting game {} for seed {}.".format(game_id, seed))
|
||||
detailed_export_game(game_id, var_id=variant_id, seed_exists=True)
|
||||
conn.commit()
|
||||
download_data.detailed_export_game(game_id, var_id=variant_id, seed_exists=True)
|
||||
database.conn.commit()
|
||||
|
||||
|
||||
def update_trivially_feasible_games(variant_id):
|
||||
variant: Variant = Variant.from_db(variant_id)
|
||||
cur.execute("SELECT seed FROM seeds WHERE variant_id = (%s) AND feasible is null", (variant_id,))
|
||||
seeds = cur.fetchall()
|
||||
variant: variants.Variant = variants.Variant.from_db(variant_id)
|
||||
database.cur.execute("SELECT seed FROM seeds WHERE variant_id = (%s) AND feasible is null", (variant_id,))
|
||||
seeds = database.cur.fetchall()
|
||||
print('Checking variant {} (id {}), found {} seeds to check...'.format(variant.name, variant_id, len(seeds)))
|
||||
|
||||
with alive_bar(total=len(seeds), title='{} ({})'.format(variant.name, variant_id)) as bar:
|
||||
with alive_progress.alive_bar(total=len(seeds), title='{} ({})'.format(variant.name, variant_id)) as bar:
|
||||
for (seed,) in seeds:
|
||||
cur.execute("SELECT id, deck_plays, one_extra_card, one_less_card, all_or_nothing "
|
||||
database.cur.execute("SELECT id, deck_plays, one_extra_card, one_less_card, all_or_nothing "
|
||||
"FROM games WHERE score = (%s) AND seed = (%s) ORDER BY id;",
|
||||
(variant.max_score, seed)
|
||||
)
|
||||
res = cur.fetchall()
|
||||
res = database.cur.fetchall()
|
||||
logger.debug("Checking seed {}: {:3} results".format(seed, len(res)))
|
||||
for (game_id, a, b, c, d) in res:
|
||||
if None in [a, b, c, d]:
|
||||
logger.debug(' Game {} not found in database, exporting...'.format(game_id))
|
||||
detailed_export_game(game_id, var_id=variant_id)
|
||||
download_data.detailed_export_game(game_id, var_id=variant_id)
|
||||
else:
|
||||
logger.debug(' Game {} already in database'.format(game_id, valid))
|
||||
valid = not any([a, b, c, d])
|
||||
if valid:
|
||||
logger.verbose('Seed {:10} (variant {}) found to be feasible via game {:6}'.format(seed, variant_id, game_id))
|
||||
cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (True, seed))
|
||||
conn.commit()
|
||||
database.cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (True, seed))
|
||||
database.conn.commit()
|
||||
break
|
||||
else:
|
||||
logger.verbose(' Cheaty game found')
|
||||
|
@ -82,7 +82,7 @@ def update_trivially_feasible_games(variant_id):
|
|||
|
||||
|
||||
def get_decks_for_all_seeds():
|
||||
cur = conn.cursor()
|
||||
cur = database.conn.database.cursor()
|
||||
cur.execute("SELECT id "
|
||||
"FROM games "
|
||||
" INNER JOIN seeds "
|
||||
|
@ -96,26 +96,26 @@ def get_decks_for_all_seeds():
|
|||
)
|
||||
print("Exporting decks for all seeds")
|
||||
res = cur.fetchall()
|
||||
with alive_bar(len(res), title="Exporting decks") as bar:
|
||||
with alive_progress.alive_bar(len(res), title="Exporting decks") as bar:
|
||||
for (game_id,) in res:
|
||||
detailed_export_game(game_id)
|
||||
download_data.detailed_export_game(game_id)
|
||||
bar()
|
||||
|
||||
|
||||
mutex = Lock()
|
||||
mutex = threading.Lock()
|
||||
|
||||
|
||||
def solve_instance(instance: HanabiInstance):
|
||||
def solve_instance(instance: hanab_game.HanabiInstance):
|
||||
# first, sanity check on running out of pace
|
||||
result = analyze(instance)
|
||||
result = deck_analyzer.analyze(instance)
|
||||
if result is not None:
|
||||
assert type(result) == InfeasibilityReason
|
||||
assert type(result) == deck_analyzer.InfeasibilityReason
|
||||
logger.debug("found infeasible deck")
|
||||
return False, None, None
|
||||
for num_remaining_cards in [0, 20]:
|
||||
# logger.info("trying with {} remaining cards".format(num_remaining_cards))
|
||||
game = GameState(instance)
|
||||
strat = GreedyStrategy(game)
|
||||
game = hanab_game.GameState(instance)
|
||||
strat = greedy_solver.GreedyStrategy(game)
|
||||
|
||||
# make a number of greedy moves
|
||||
while not game.is_over() and not game.is_known_lost():
|
||||
|
@ -136,10 +136,10 @@ def solve_instance(instance: HanabiInstance):
|
|||
return True, sol, num_remaining_cards
|
||||
logger.debug(
|
||||
"No success with {} remaining cards, reducing number of greedy moves, failed attempt was: {}".format(
|
||||
num_remaining_cards, link(game)))
|
||||
num_remaining_cards, compress.link(game)))
|
||||
# print("Aborting trying with greedy strat")
|
||||
logger.debug("Starting full SAT solver")
|
||||
game = GameState(instance)
|
||||
game = hanab_game.GameState(instance)
|
||||
a, b = solve_sat(game)
|
||||
return a, b, instance.draw_pile_size
|
||||
|
||||
|
@ -148,21 +148,21 @@ def solve_instance(instance: HanabiInstance):
|
|||
def solve_seed_with_timeout(seed, num_players, deck_compressed, var_name: Optional[str] = None):
|
||||
try:
|
||||
logger.verbose("Starting to solve seed {}".format(seed))
|
||||
deck = decompress_deck(deck_compressed)
|
||||
t0 = perf_counter()
|
||||
solvable, solution, num_remaining_cards = solve_instance(HanabiInstance(deck, num_players))
|
||||
t1 = perf_counter()
|
||||
deck = compress.decompress_deck(deck_compressed)
|
||||
t0 = time.perf_counter()
|
||||
solvable, solution, num_remaining_cards = solve_instance(hanab_game.HanabiInstance(deck, num_players))
|
||||
t1 = time.perf_counter()
|
||||
logger.verbose("Solved instance {} in {} seconds: {}".format(seed, round(t1 - t0, 2), solvable))
|
||||
|
||||
mutex.acquire()
|
||||
if solvable is not None:
|
||||
cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (solvable, seed))
|
||||
conn.commit()
|
||||
database.cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (solvable, seed))
|
||||
database.conn.commit()
|
||||
mutex.release()
|
||||
|
||||
if solvable == True:
|
||||
logger.verbose("Success with {} cards left in draw by greedy solver on seed {}: {}\n".format(
|
||||
num_remaining_cards, seed, link(solution))
|
||||
num_remaining_cards, seed, compress.link(solution))
|
||||
)
|
||||
elif solvable == False:
|
||||
logger.debug("seed {} was not solvable".format(seed))
|
||||
|
@ -187,18 +187,14 @@ def solve_seed(seed, num_players, deck_compressed, var_name: Optional[str] = Non
|
|||
|
||||
|
||||
def solve_unknown_seeds(variant_id, variant_name: Optional[str] = None):
|
||||
cur.execute("SELECT seed, num_players, deck FROM seeds WHERE variant_id = (%s) AND feasible IS NULL", (variant_id,))
|
||||
res = cur.fetchall()
|
||||
|
||||
# for r in res:
|
||||
# solve_seed(r[0], r[1], r[2], variant_name)
|
||||
database.cur.execute(
|
||||
"SELECT seed, num_players, deck FROM seeds WHERE variant_id = (%s) AND feasible IS NULL",
|
||||
(variant_id,)
|
||||
)
|
||||
res = database.cur.fetchall()
|
||||
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=MAX_PROCESSES) as executor:
|
||||
fs = [executor.submit(solve_seed, r[0], r[1], r[2], variant_name) for r in res]
|
||||
with alive_bar(len(res), title='Seed solving on {}'.format(variant_name)) as bar:
|
||||
with alive_progress.alive_bar(len(res), title='Seed solving on {}'.format(variant_name)) as bar:
|
||||
for f in concurrent.futures.as_completed(fs):
|
||||
bar()
|
||||
|
||||
|
||||
update_trivially_feasible_games(0)
|
||||
solve_unknown_seeds(0, "No Variant")
|
|
@ -1,6 +1,6 @@
|
|||
import enum
|
||||
from typing import List, Optional
|
||||
from hanabi.game import DeckCard, ActionType
|
||||
from hanabi import hanab_game
|
||||
|
||||
from hanabi.database.database import cur
|
||||
|
||||
|
@ -161,7 +161,7 @@ class Variant:
|
|||
def _synesthesia_ranks(self, color_value: int) -> List[int]:
|
||||
return [rank for rank in self.ranks if (rank - color_value) % len(self.colors) == 0]
|
||||
|
||||
def rank_touches(self, card: DeckCard, value: int):
|
||||
def rank_touches(self, card: hanab_game.DeckCard, value: int):
|
||||
assert 0 <= card.suitIndex < self.num_suits,\
|
||||
f"Unexpected card {card}, suitIndex {card.suitIndex} out of bounds for {self.num_suits} suits."
|
||||
assert not self.no_rank_clues, "Cluing rank not allowed in this variant."
|
||||
|
@ -186,7 +186,7 @@ class Variant:
|
|||
ranks = self._preprocess_rank(value)
|
||||
return any(self.suits[card.suitIndex].rank_touches(card.rank, rank) for rank in ranks)
|
||||
|
||||
def color_touches(self, card: DeckCard, value: int):
|
||||
def color_touches(self, card: hanab_game.DeckCard, value: int):
|
||||
assert 0 <= card.suitIndex < self.num_suits, \
|
||||
f"Unexpected card {card}, suitIndex {card.suitIndex} out of bounds for {self.num_suits} suits."
|
||||
assert not self.no_color_clues, "Cluing color not allowed in this variant."
|
||||
|
|
|
@ -24,7 +24,6 @@ class LoggerManager:
|
|||
'%(message)s'
|
||||
)
|
||||
|
||||
|
||||
self.console_handler = logging.StreamHandler()
|
||||
self.console_handler.setLevel(console_level)
|
||||
self.console_handler.setFormatter(self.nothing_formatter)
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
from hanabi.live.compress import DeckCard
|
||||
from hanabi.live import compress
|
||||
from enum import Enum
|
||||
|
||||
from hanabi.database import conn
|
||||
from hanabi.game import HanabiInstance, pp_deck
|
||||
from hanabi.live.compress import decompress_deck
|
||||
from hanabi.database import database
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import compress
|
||||
|
||||
|
||||
class InfeasibilityType(Enum):
|
||||
OutOfPace = 0 # idx denotes index of last card drawn before being forced to reduce pace, value denotes how bad pace is
|
||||
OutOfHandSize = 1 # idx denotes index of last card drawn before being forced to discard a crit
|
||||
OutOfPace = 0 # idx denotes index of last card drawn before being forced to reduce pace, value denotes how bad pace is
|
||||
OutOfHandSize = 1 # idx denotes index of last card drawn before being forced to discard a crit
|
||||
NotTrivial = 2
|
||||
CritAtBottom = 3
|
||||
|
||||
|
@ -32,17 +32,17 @@ class InfeasibilityReason():
|
|||
def analyze_suit(occurrences):
|
||||
# denotes the indexes of copies we can use wlog
|
||||
picks = {
|
||||
1: 0,
|
||||
**{ r: None for r in range(2, 5) },
|
||||
5: 0
|
||||
1: 0,
|
||||
**{r: None for r in range(2, 5)},
|
||||
5: 0
|
||||
}
|
||||
|
||||
# denotes the intervals when cards will be played wlog
|
||||
play_times = {
|
||||
1: [occurrences[1][0]],
|
||||
**{ r: None for _ in range(instance.num_suits)
|
||||
for r in range(2,6)
|
||||
}
|
||||
1: [occurrences[1][0]],
|
||||
**{r: None for _ in range(instance.num_suits)
|
||||
for r in range(2, 6)
|
||||
}
|
||||
}
|
||||
|
||||
print("occurrences are: {}".format(occurrences))
|
||||
|
@ -51,7 +51,7 @@ def analyze_suit(occurrences):
|
|||
|
||||
# general analysis
|
||||
earliest_play = max(min(play_times[rank - 1]), min(occurrences[rank]))
|
||||
latest_play = max( *play_times[rank - 1], *occurrences[rank])
|
||||
latest_play = max(*play_times[rank - 1], *occurrences[rank])
|
||||
play_times[rank] = [earliest_play, latest_play]
|
||||
|
||||
# check a few extra cases regarding the picks when the rank is not 5
|
||||
|
@ -62,30 +62,28 @@ def analyze_suit(occurrences):
|
|||
play_times[rank] = [min(occurrences[rank])]
|
||||
continue
|
||||
|
||||
|
||||
# check if the second copy is not worse than the first when it comes,
|
||||
# because we either have to wait for smaller cards anyway
|
||||
# or the next card is not there anyway
|
||||
if max(occurrences[rank]) < max(earliest_play, min(occurrences[rank + 1])):
|
||||
if max(occurrences[rank]) < max(earliest_play, min(occurrences[rank + 1])):
|
||||
picks[rank] = 1
|
||||
|
||||
|
||||
return picks, play_times
|
||||
|
||||
|
||||
|
||||
def analyze_card_usage(instance: HanabiInstance):
|
||||
def analyze_card_usage(instance: hanab_game.HanabiInstance):
|
||||
storage_size = instance.num_players * instance.hand_size
|
||||
for suit in range(instance.num_suits):
|
||||
print("analysing suit {}: {}".format(
|
||||
suit,
|
||||
pp_deck((c for c in instance.deck if c.suitIndex == suit))
|
||||
)
|
||||
hanab_game.pp_deck((c for c in instance.deck if c.suitIndex == suit))
|
||||
)
|
||||
)
|
||||
|
||||
occurrences = {
|
||||
rank: [max(0, i - storage_size + 1) for (i, card) in enumerate(instance.deck) if card == DeckCard(suit, rank)]
|
||||
for rank in range(1,6)
|
||||
rank: [max(0, i - storage_size + 1) for (i, card) in enumerate(instance.deck) if
|
||||
card == hanab_game.DeckCard(suit, rank)]
|
||||
for rank in range(1, 6)
|
||||
}
|
||||
|
||||
picks, play_times = analyze_suit(occurrences)
|
||||
|
@ -96,9 +94,7 @@ def analyze_card_usage(instance: HanabiInstance):
|
|||
print()
|
||||
|
||||
|
||||
|
||||
def analyze(instance: HanabiInstance, find_non_trivial=False) -> InfeasibilityReason | None:
|
||||
|
||||
def analyze(instance: hanab_game.HanabiInstance, find_non_trivial=False) -> InfeasibilityReason | None:
|
||||
if instance.deck[-1].rank != 5 and instance.deck[-1].suitIndex + instance.num_dark_suits >= instance.num_suits:
|
||||
return InfeasibilityReason(InfeasibilityType.CritAtBottom, instance.deck_size - 1)
|
||||
|
||||
|
@ -121,7 +117,7 @@ def analyze(instance: HanabiInstance, find_non_trivial=False) -> InfeasibilityRe
|
|||
stacks[card.suitIndex] += 1
|
||||
# check for further playables that we stored
|
||||
for check_rank in range(card.rank + 1, 6):
|
||||
check_card = DeckCard(card.suitIndex, check_rank)
|
||||
check_card = hanab_game.DeckCard(card.suitIndex, check_rank)
|
||||
if check_card in stored_cards:
|
||||
stacks[card.suitIndex] += 1
|
||||
stored_cards.remove(check_card)
|
||||
|
@ -130,36 +126,36 @@ def analyze(instance: HanabiInstance, find_non_trivial=False) -> InfeasibilityRe
|
|||
else:
|
||||
break
|
||||
elif card.rank <= stacks[card.suitIndex]:
|
||||
pass # card is trash
|
||||
pass # card is trash
|
||||
elif card.rank > stacks[card.suitIndex] + 1:
|
||||
# need to store card
|
||||
if card in stored_cards or card.rank == 5:
|
||||
stored_crits.add(card)
|
||||
stored_cards.add(card)
|
||||
|
||||
## check for out of handsize:
|
||||
|
||||
# check for out of handsize:
|
||||
if len(stored_crits) == instance.num_players * instance.hand_size:
|
||||
return InfeasibilityReason(InfeasibilityType.OutOfHandSize, i)
|
||||
|
||||
if find_non_trivial and len(stored_cards) == instance.num_players * instance.hand_size:
|
||||
ret = InfeasibilityReason(InfeasibilityType.NotTrivial, i)
|
||||
ret = InfeasibilityReason(InfeasibilityType.NotTrivial, i)
|
||||
|
||||
# the last - 1 is there because we have to discard 'next', causing a further draw
|
||||
max_remaining_plays = (instance.deck_size - i - 1) + instance.num_players - 1
|
||||
|
||||
needed_plays = 5 * instance.num_suits - sum(stacks)
|
||||
missing = max_remaining_plays - needed_plays
|
||||
missing = max_remaining_plays - needed_plays
|
||||
if missing < min_forced_pace:
|
||||
# print("update to {}: {}".format(i, missing))
|
||||
# print("update to {}: {}".format(i, missing))
|
||||
min_forced_pace = missing
|
||||
worst_index = i
|
||||
|
||||
# check that we correctly walked through the deck
|
||||
assert(len(stored_cards) == 0)
|
||||
assert(len(stored_crits) == 0)
|
||||
assert(sum(stacks) == 5 * instance.num_suits)
|
||||
assert (len(stored_cards) == 0)
|
||||
assert (len(stored_crits) == 0)
|
||||
assert (sum(stacks) == 5 * instance.num_suits)
|
||||
|
||||
if min_forced_pace < 0:
|
||||
if min_forced_pace < 0:
|
||||
return InfeasibilityReason(InfeasibilityType.OutOfPace, worst_index, min_forced_pace)
|
||||
elif ret is not None:
|
||||
return ret
|
||||
|
@ -168,10 +164,12 @@ def analyze(instance: HanabiInstance, find_non_trivial=False) -> InfeasibilityRe
|
|||
|
||||
|
||||
def run_on_database():
|
||||
cur = conn.cursor()
|
||||
cur2 = conn.cursor()
|
||||
cur = database.conn.cursor()
|
||||
cur2 = database.conn.cursor()
|
||||
for num_p in range(2, 6):
|
||||
cur.execute("SELECT seed, num_players, deck from seeds where variant_id = 0 and num_players = (%s) order by seed asc", (num_p,))
|
||||
cur.execute(
|
||||
"SELECT seed, num_players, deck from seeds where variant_id = 0 and num_players = (%s) order by seed asc",
|
||||
(num_p,))
|
||||
res = cur.fetchall()
|
||||
hand = 0
|
||||
pace = 0
|
||||
|
@ -179,11 +177,11 @@ def run_on_database():
|
|||
d = None
|
||||
print("Checking {} {}-player seeds from database".format(len(res), num_p))
|
||||
for (seed, num_players, deck) in res:
|
||||
deck = decompress_deck(deck)
|
||||
a = analyze(HanabiInstance(deck, num_players), True)
|
||||
deck = compress.decompress_deck(deck)
|
||||
a = analyze(hanab_game.HanabiInstance(deck, num_players), True)
|
||||
if type(a) == InfeasibilityReason:
|
||||
if a.type == InfeasibilityType.OutOfHandSize:
|
||||
# print("Seed {} infeasible: {}\n{}".format(seed, a, deck))
|
||||
# print("Seed {} infeasible: {}\n{}".format(seed, a, deck))
|
||||
hand += 1
|
||||
elif a.type == InfeasibilityType.OutOfPace:
|
||||
pace += 1
|
||||
|
@ -191,28 +189,12 @@ def run_on_database():
|
|||
non_trivial += 1
|
||||
d = seed, deck
|
||||
|
||||
print("Found {} seeds running out of hand size, {} running out of pace and {} that are not trivial".format(hand, pace, non_trivial))
|
||||
print("Found {} seeds running out of hand size, {} running out of pace and {} that are not trivial".format(hand,
|
||||
pace,
|
||||
non_trivial))
|
||||
if d is not None:
|
||||
print("example non-trivial deck (seed {}): [{}]"
|
||||
.format(
|
||||
d[0],
|
||||
", ".join(c.colorize() for c in d[1])
|
||||
)
|
||||
)
|
||||
print("example non-trivial deck (seed {}): [{}]".format(
|
||||
d[0],
|
||||
", ".join(c.colorize() for c in d[1])
|
||||
))
|
||||
print()
|
||||
# if p < 0:
|
||||
# print("seed {} ({} players) runs out of pace ({}) after drawing {}: {}:\n{}".format(seed, num_players, p, i, deck[i], deck))
|
||||
# cur.execute("UPDATE seeds SET feasible = f WHERE seed = (%s)", seed)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print(deck)
|
||||
# a = analyze(deck, 4)
|
||||
# print(a)
|
||||
# run_on_database()
|
||||
deck_str = "15bcfwnqsdmbnfuvhskrgfixwckklojxgemrhpqppuaaiyadultv"
|
||||
deck_str = "15misofrmvvuxujkphaqpcflegysdwqaakcilbxtuhwfrbgdnpkn"
|
||||
deck_str = "15wqpvhdkufjcrewyxulvarhgolkixmfgmndbpstqbupcanfisak"
|
||||
deck = decompress_deck(deck_str)
|
||||
print(pp_deck(deck))
|
||||
instance = HanabiInstance(deck, 2)
|
||||
analyze_card_usage(instance)
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
#! /bin/python3
|
||||
import collections
|
||||
import sys
|
||||
|
||||
from enum import Enum
|
||||
from hanabi import logger
|
||||
from typing import Optional
|
||||
|
||||
from hanabi.game import DeckCard, GameState, HanabiInstance
|
||||
from hanabi.live.compress import link, decompress_deck
|
||||
from hanabi.database.database import conn
|
||||
from hanabi import logger
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import compress
|
||||
from hanabi.database import database
|
||||
|
||||
|
||||
class CardType(Enum):
|
||||
|
@ -19,8 +20,8 @@ class CardType(Enum):
|
|||
UniqueVisible = 4
|
||||
|
||||
|
||||
class CardState():
|
||||
def __init__(self, card_type: CardType, card: DeckCard, weight=1):
|
||||
class CardState:
|
||||
def __init__(self, card_type: CardType, card: hanab_game.DeckCard, weight: Optional[int] = 1):
|
||||
self.card_type = card_type
|
||||
self.card = card
|
||||
self.weight = weight
|
||||
|
@ -66,7 +67,7 @@ class WeightedCard:
|
|||
|
||||
|
||||
class HandState:
|
||||
def __init__(self, player: int, game_state: GameState):
|
||||
def __init__(self, player: int, game_state: hanab_game.GameState):
|
||||
self.trash = []
|
||||
self.playable = []
|
||||
self.critical = []
|
||||
|
@ -111,14 +112,14 @@ class HandState:
|
|||
else:
|
||||
assert len(self.critical) > 0, "Programming error."
|
||||
self.best_discard = self.critical[-1]
|
||||
self.discard_badness = 600 - 100*self.best_discard.card.rank
|
||||
self.discard_badness = 600 - 100 * self.best_discard.card.rank
|
||||
|
||||
def num_useful_cards(self):
|
||||
return len(self.dupes) + len(self.uniques) + len(self.playable) + len(self.critical)
|
||||
|
||||
|
||||
class CheatingStrategy:
|
||||
def __init__(self, game_state: GameState):
|
||||
def __init__(self, game_state: hanab_game.GameState):
|
||||
self.game_state = game_state
|
||||
|
||||
def make_move(self):
|
||||
|
@ -135,10 +136,8 @@ class CheatingStrategy:
|
|||
exit(0)
|
||||
|
||||
|
||||
|
||||
|
||||
class GreedyStrategy():
|
||||
def __init__(self, game_state: GameState):
|
||||
def __init__(self, game_state: hanab_game.GameState):
|
||||
self.game_state = game_state
|
||||
|
||||
self.earliest_draw_times = []
|
||||
|
@ -146,7 +145,7 @@ class GreedyStrategy():
|
|||
self.earliest_draw_times.append([])
|
||||
for r in range(1, 6):
|
||||
self.earliest_draw_times[s].append(max(
|
||||
game_state.deck.index(DeckCard(s, r)) - game_state.hand_size * game_state.num_players + 1,
|
||||
game_state.deck.index(hanab_game.DeckCard(s, r)) - game_state.hand_size * game_state.num_players + 1,
|
||||
0 if r == 1 else self.earliest_draw_times[s][r - 2]
|
||||
))
|
||||
|
||||
|
@ -188,7 +187,7 @@ class GreedyStrategy():
|
|||
copy_holders = set(self.game_state.holding_players(state.card))
|
||||
copy_holders.remove(player)
|
||||
connecting_holders = set(
|
||||
self.game_state.holding_players(DeckCard(state.card.suitIndex, state.card.rank + 1)))
|
||||
self.game_state.holding_players(hanab_game.DeckCard(state.card.suitIndex, state.card.rank + 1)))
|
||||
|
||||
if len(copy_holders) == 0:
|
||||
# card is unique, imortancy is based lexicographically on whether somebody has the conn. card and the rank
|
||||
|
@ -244,8 +243,8 @@ class GreedyStrategy():
|
|||
self.game_state.clue()
|
||||
|
||||
|
||||
def run_deck(instance: HanabiInstance) -> GameState:
|
||||
gs = GameState(instance)
|
||||
def run_deck(instance: hanab_game.HanabiInstance) -> hanab_game.GameState:
|
||||
gs = hanab_game.GameState(instance)
|
||||
strat = CheatingStrategy(gs)
|
||||
while not gs.is_over():
|
||||
strat.make_move()
|
||||
|
@ -256,7 +255,7 @@ def run_samples(num_players, sample_size):
|
|||
logger.info("Running {} test games on {} players using greedy strategy.".format(sample_size, num_players))
|
||||
won = 0
|
||||
lost = 0
|
||||
cur = conn.cursor()
|
||||
cur = database.conn.cursor()
|
||||
cur.execute(
|
||||
"SELECT seed, num_players, deck, variant_id "
|
||||
"FROM seeds WHERE variant_id = 0 AND num_players = (%s)"
|
||||
|
@ -264,13 +263,13 @@ def run_samples(num_players, sample_size):
|
|||
(num_players, sample_size))
|
||||
for r in cur:
|
||||
seed, num_players, deck_str, var_id = r
|
||||
deck = decompress_deck(deck_str)
|
||||
instance = HanabiInstance(deck, num_players)
|
||||
deck = compress.decompress_deck(deck_str)
|
||||
instance = hanab_game.HanabiInstance(deck, num_players)
|
||||
final_game_state = run_deck(instance)
|
||||
if final_game_state.score != instance.max_score:
|
||||
logger.verbose(
|
||||
"Greedy strategy lost {}-player seed {:10} {}:\n{}"
|
||||
.format(num_players, seed, str(deck), link(final_game_state))
|
||||
.format(num_players, seed, str(deck), compress.link(final_game_state))
|
||||
)
|
||||
lost += 1
|
||||
else:
|
||||
|
@ -279,9 +278,3 @@ def run_samples(num_players, sample_size):
|
|||
logger.info("Won {} ({}%) and lost {} ({}%) from sample of {} test games using greedy strategy.".format(
|
||||
won, round(100 * won / sample_size, 2), lost, round(100 * lost / sample_size, 2), sample_size
|
||||
))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for p in range(2, 6):
|
||||
run_samples(p, int(sys.argv[1]))
|
||||
print()
|
||||
|
|
|
@ -1,13 +1,12 @@
|
|||
import copy
|
||||
from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, get_model, Equals, GE, NotEquals, Int
|
||||
from pysmt.typing import INT
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from hanabi.game import DeckCard, GameState, HanabiInstance
|
||||
from hanabi.live.compress import link, decompress_deck
|
||||
from greedy_solver import GreedyStrategy
|
||||
from hanabi.constants import COLOR_INITIALS
|
||||
from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, get_model, Equals, GE, NotEquals, Int
|
||||
from pysmt.typing import INT
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi import constants
|
||||
from hanabi import hanab_game
|
||||
|
||||
|
||||
# literals to model game as sat instance to check for feasibility
|
||||
|
@ -15,16 +14,15 @@ from hanabi import logger
|
|||
class Literals():
|
||||
# num_suits is total number of suits, i.e. also counts the dark suits
|
||||
# default distribution among all suits is assumed
|
||||
def __init__(self, instance: HanabiInstance):
|
||||
|
||||
def __init__(self, instance: hanab_game.HanabiInstance):
|
||||
# clues[m][i] == "after move m we have i clues", in clue starved, this counts half clues
|
||||
self.clues = {
|
||||
-1: Int(16 if instance.clue_starved else 8) # we have 8 clues after turn
|
||||
, **{
|
||||
m: Symbol('m{}clues'.format(m), INT)
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: Int(16 if instance.clue_starved else 8) # we have 8 clues after turn
|
||||
, **{
|
||||
m: Symbol('m{}clues'.format(m), INT)
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
self.pace = {
|
||||
-1: Int(instance.initial_pace)
|
||||
|
@ -36,78 +34,83 @@ class Literals():
|
|||
|
||||
# strikes[m][i] == "after move m we have at least i strikes"
|
||||
self.strikes = {
|
||||
-1: {i: Bool(i == 0) for i in range(0, instance.num_strikes + 1)} # no strikes when we start
|
||||
, **{
|
||||
m: {
|
||||
0: Bool(True),
|
||||
**{ s: Symbol('m{}strikes{}'.format(m,s)) for s in range(1, instance.num_strikes) },
|
||||
instance.num_strikes: Bool(False) # never so many clues that we lose. Implicitly forbids striking out
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: {i: Bool(i == 0) for i in range(0, instance.num_strikes + 1)} # no strikes when we start
|
||||
, **{
|
||||
m: {
|
||||
0: Bool(True),
|
||||
**{s: Symbol('m{}strikes{}'.format(m, s)) for s in range(1, instance.num_strikes)},
|
||||
instance.num_strikes: Bool(False)
|
||||
# never so many clues that we lose. Implicitly forbids striking out
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# extraturn[m] = "turn m is a move part of the extra round or a dummy turn"
|
||||
self.extraround = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size else Symbol('m{}extra'.format(m)) # it takes at least as many turns as cards in the draw pile to start the extra round
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size else Symbol('m{}extra'.format(m))
|
||||
# it takes at least as many turns as cards in the draw pile to start the extra round
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# dummyturn[m] = "turn m is a dummy nurn and not actually part of the game"
|
||||
self.dummyturn = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size + instance.num_players else Symbol('m{}dummy'.format(m))
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size + instance.num_players else Symbol('m{}dummy'.format(m))
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# draw[m][i] == "at move m we play/discard deck[i]"
|
||||
self.discard = {
|
||||
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(instance.deck_size)}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(instance.deck_size)}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
|
||||
# draw[m][i] == "at move m we draw deck card i"
|
||||
self.draw = {
|
||||
-1: { i: Bool(i == instance.num_dealt_cards - 1) for i in range(instance.num_dealt_cards - 1, instance.deck_size) }
|
||||
, **{
|
||||
m: {
|
||||
instance.num_dealt_cards - 1: Bool(False),
|
||||
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(instance.num_dealt_cards, instance.deck_size)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: {i: Bool(i == instance.num_dealt_cards - 1) for i in
|
||||
range(instance.num_dealt_cards - 1, instance.deck_size)}
|
||||
, **{
|
||||
m: {
|
||||
instance.num_dealt_cards - 1: Bool(False),
|
||||
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(instance.num_dealt_cards, instance.deck_size)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# strike[m] = "at move m we get a strike"
|
||||
self.strike = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Symbol('m{}newstrike'.format(m))
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Symbol('m{}newstrike'.format(m))
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# progress[m][card = (suitIndex, rank)] == "after move m we have played in suitIndex up to rank"
|
||||
self.progress = {
|
||||
-1: {(s, r): Bool(r == 0) for s in range(0, instance.num_suits) for r in range(0, 6)} # at start, have only played rank zero
|
||||
, **{
|
||||
m: {
|
||||
**{(s, 0): Bool(True) for s in range(0, instance.num_suits)},
|
||||
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, instance.num_suits) for r in range(1, 6)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
-1: {(s, r): Bool(r == 0) for s in range(0, instance.num_suits) for r in range(0, 6)}
|
||||
# at start, have only played rank zero
|
||||
, **{
|
||||
m: {
|
||||
**{(s, 0): Bool(True) for s in range(0, instance.num_suits)},
|
||||
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, instance.num_suits) for r in
|
||||
range(1, 6)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
## Utility variables
|
||||
|
||||
# discard_any[m] == "at move m we play/discard a card"
|
||||
self.discard_any = { m: Symbol('m{}discard_any'.format(m)) for m in range(instance.max_winning_moves) }
|
||||
self.discard_any = {m: Symbol('m{}discard_any'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# draw_any[m] == "at move m we draw a card"
|
||||
self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
@ -122,11 +125,12 @@ class Literals():
|
|||
self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
|
||||
def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int] = 0) -> Tuple[bool, Optional[GameState]]:
|
||||
if isinstance(starting_state, HanabiInstance):
|
||||
def solve_sat(starting_state: hanab_game.GameState | hanab_game.HanabiInstance, min_pace: Optional[int] = 0) -> Tuple[
|
||||
bool, Optional[hanab_game.GameState]]:
|
||||
if isinstance(starting_state, hanab_game.HanabiInstance):
|
||||
instance = starting_state
|
||||
game_state = GameState(instance)
|
||||
elif isinstance(starting_state, GameState):
|
||||
game_state = hanab_game.GameState(instance)
|
||||
elif isinstance(starting_state, hanab_game.GameState):
|
||||
instance = starting_state.instance
|
||||
game_state = starting_state
|
||||
else:
|
||||
|
@ -141,7 +145,7 @@ def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int
|
|||
starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands]
|
||||
first_turn = len(game_state.actions)
|
||||
|
||||
if isinstance(starting_state, GameState):
|
||||
if isinstance(starting_state, hanab_game.GameState):
|
||||
# have to set additional variables
|
||||
|
||||
# set initial clues
|
||||
|
@ -157,7 +161,7 @@ def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int
|
|||
|
||||
# check if extraround has started (usually not)
|
||||
ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players)
|
||||
ls.dummyturn[first_turn -1] = Bool(False)
|
||||
ls.dummyturn[first_turn - 1] = Bool(False)
|
||||
|
||||
# set recent draws: important to model progress
|
||||
# we just pretend that the last card drawn was in fact drawn last turn,
|
||||
|
@ -169,7 +173,6 @@ def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int
|
|||
for m in range(first_turn, instance.max_winning_moves):
|
||||
ls.draw[m][game_state.progress - 1] = Bool(False)
|
||||
|
||||
|
||||
# model initial progress
|
||||
for s in range(0, game_state.num_suits):
|
||||
for r in range(0, 6):
|
||||
|
@ -195,20 +198,24 @@ def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int
|
|||
Implies(ls.play[m], ls.discard_any[m]),
|
||||
|
||||
# definition of ls.play5
|
||||
Iff(ls.play5[m], And(ls.play[m], Or(ls.discard[m][i] for i in range(instance.deck_size) if instance.deck[i].rank == 5))),
|
||||
Iff(ls.play5[m],
|
||||
And(ls.play[m], Or(ls.discard[m][i] for i in range(instance.deck_size) if instance.deck[i].rank == 5))),
|
||||
|
||||
# definition of ls.incr_clues
|
||||
Iff(ls.incr_clues[m], And(ls.discard_any[m], NotEquals(ls.clues[m-1], Int(16 if instance.clue_starved else 8)), Implies(ls.play[m], ls.play5[m]))),
|
||||
Iff(ls.incr_clues[m],
|
||||
And(ls.discard_any[m], NotEquals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)),
|
||||
Implies(ls.play[m], ls.play5[m]))),
|
||||
|
||||
# change of ls.clues
|
||||
Implies(And(Not(ls.discard_any[m]), Not(ls.dummyturn[m])),
|
||||
Equals(ls.clues[m], ls.clues[m-1] - (2 if instance.clue_starved else 1))),
|
||||
Implies(ls.incr_clues[m], Equals(ls.clues[m], ls.clues[m-1] + 1)),
|
||||
Implies(And(Or(ls.discard_any[m], ls.dummyturn[m]), Not(ls.incr_clues[m])), Equals(ls.clues[m], ls.clues[m-1])),
|
||||
Equals(ls.clues[m], ls.clues[m - 1] - (2 if instance.clue_starved else 1))),
|
||||
Implies(ls.incr_clues[m], Equals(ls.clues[m], ls.clues[m - 1] + 1)),
|
||||
Implies(And(Or(ls.discard_any[m], ls.dummyturn[m]), Not(ls.incr_clues[m])),
|
||||
Equals(ls.clues[m], ls.clues[m - 1])),
|
||||
|
||||
# change of pace
|
||||
Implies(And(ls.discard_any[m], Or(ls.strike[m], Not(ls.play[m]))), Equals(ls.pace[m], ls.pace[m-1] - 1)),
|
||||
Implies(Or(Not(ls.discard_any[m]), And(Not(ls.strike[m]), ls.play[m])), Equals(ls.pace[m], ls.pace[m-1])),
|
||||
Implies(And(ls.discard_any[m], Or(ls.strike[m], Not(ls.play[m]))), Equals(ls.pace[m], ls.pace[m - 1] - 1)),
|
||||
Implies(Or(Not(ls.discard_any[m]), And(Not(ls.strike[m]), ls.play[m])), Equals(ls.pace[m], ls.pace[m - 1])),
|
||||
|
||||
# pace is nonnegative
|
||||
GE(ls.pace[m], Int(min_pace)),
|
||||
|
@ -218,85 +225,95 @@ def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int
|
|||
# It's easy to see that if there is any solution to the instance, then there is also one where we only strike at 8 clues
|
||||
# (or not at all) -> Just strike later if neccessary
|
||||
# So, we decrease the solution space with this formulation, but do not change whether it's empty or not
|
||||
Iff(ls.strike[m], And(ls.discard_any[m], Not(ls.play[m]), Equals(ls.clues[m-1], Int(16 if instance.clue_starved else 8)))),
|
||||
Iff(ls.strike[m],
|
||||
And(ls.discard_any[m], Not(ls.play[m]), Equals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)))),
|
||||
|
||||
# change of strikes
|
||||
*[Iff(ls.strikes[m][i], Or(ls.strikes[m-1][i], And(ls.strikes[m-1][i-1], ls.strike[m]))) for i in range(1, instance.num_strikes + 1)],
|
||||
*[Iff(ls.strikes[m][i], Or(ls.strikes[m - 1][i], And(ls.strikes[m - 1][i - 1], ls.strike[m]))) for i in
|
||||
range(1, instance.num_strikes + 1)],
|
||||
|
||||
# less than 0 clues not allowed
|
||||
Implies(Not(ls.discard_any[m]), Or(GE(ls.clues[m-1], Int(1)), ls.dummyturn[m])),
|
||||
Implies(Not(ls.discard_any[m]), Or(GE(ls.clues[m - 1], Int(1)), ls.dummyturn[m])),
|
||||
|
||||
# we can only draw card i if the last ls.drawn card was i-1
|
||||
*[Implies(ls.draw[m][i], Or(And(ls.draw[m0][i-1], *[Not(ls.draw_any[m1]) for m1 in range(m0+1, m)]) for m0 in range(max(first_turn - 1, m-9), m))) for i in range(game_state.progress, instance.deck_size)],
|
||||
*[Implies(ls.draw[m][i], Or(
|
||||
And(ls.draw[m0][i - 1], *[Not(ls.draw_any[m1]) for m1 in range(m0 + 1, m)]) for m0 in
|
||||
range(max(first_turn - 1, m - 9), m))) for i in range(game_state.progress, instance.deck_size)],
|
||||
|
||||
# we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula)
|
||||
AtMostOne(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size)),
|
||||
|
||||
# we can only discard a card if we drew it earlier...
|
||||
*[Implies(ls.discard[m][i], Or(ls.draw[m0][i] for m0 in range(m-instance.num_players, first_turn - 1, -instance.num_players))) for i in range(game_state.progress, instance.deck_size)],
|
||||
*[Implies(ls.discard[m][i],
|
||||
Or(ls.draw[m0][i] for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players)))
|
||||
for i in range(game_state.progress, instance.deck_size)],
|
||||
|
||||
# ...or if it was part of the initial hand
|
||||
*[Not(ls.discard[m][i]) for i in range(0, game_state.progress) if i not in starting_hands[m % instance.num_players] ],
|
||||
*[Not(ls.discard[m][i]) for i in range(0, game_state.progress) if
|
||||
i not in starting_hands[m % instance.num_players]],
|
||||
|
||||
# we can only discard a card if we did not discard it yet
|
||||
*[Implies(ls.discard[m][i], And(Not(ls.discard[m0][i]) for m0 in range(m-instance.num_players, first_turn - 1, -instance.num_players))) for i in range(instance.deck_size)],
|
||||
*[Implies(ls.discard[m][i], And(
|
||||
Not(ls.discard[m0][i]) for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players)))
|
||||
for i in range(instance.deck_size)],
|
||||
|
||||
# we can only discard at most one card (FIXME: avoid quadratic formula)
|
||||
AtMostOne(ls.discard[m][i] for i in range(instance.deck_size)),
|
||||
|
||||
# we can only play a card if it matches the progress
|
||||
*[Implies(
|
||||
And(ls.discard[m][i], ls.play[m]),
|
||||
And(
|
||||
Not(ls.progress[m-1][instance.deck[i].suitIndex, instance.deck[i].rank]),
|
||||
ls.progress[m-1][instance.deck[i].suitIndex, instance.deck[i].rank-1 ]
|
||||
)
|
||||
)
|
||||
for i in range(instance.deck_size)
|
||||
],
|
||||
And(ls.discard[m][i], ls.play[m]),
|
||||
And(
|
||||
Not(ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank]),
|
||||
ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank - 1]
|
||||
)
|
||||
)
|
||||
for i in range(instance.deck_size)
|
||||
],
|
||||
|
||||
# change of progress
|
||||
*[
|
||||
Iff(
|
||||
ls.progress[m][s, r],
|
||||
Or(
|
||||
ls.progress[m-1][s, r],
|
||||
ls.progress[m - 1][s, r],
|
||||
And(ls.play[m], Or(ls.discard[m][i]
|
||||
for i in range(0, instance.deck_size)
|
||||
if instance.deck[i] == DeckCard(s, r) ))
|
||||
)
|
||||
for i in range(0, instance.deck_size)
|
||||
if instance.deck[i] == hanab_game.DeckCard(s, r)))
|
||||
)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
],
|
||||
],
|
||||
|
||||
# extra round bool
|
||||
Iff(ls.extraround[m], Or(ls.extraround[m-1], ls.draw[m-1][instance.deck_size-1])),
|
||||
Iff(ls.extraround[m], Or(ls.extraround[m - 1], ls.draw[m - 1][instance.deck_size - 1])),
|
||||
|
||||
# dummy turn bool
|
||||
*[Iff(ls.dummyturn[m], Or(ls.dummyturn[m-1], ls.draw[m-1 - instance.num_players][instance.deck_size-1])) for i in range(0,1) if m >= instance.num_players]
|
||||
*[Iff(ls.dummyturn[m], Or(ls.dummyturn[m - 1], ls.draw[m - 1 - instance.num_players][instance.deck_size - 1]))
|
||||
for i in range(0, 1) if m >= instance.num_players]
|
||||
)
|
||||
|
||||
win = And(
|
||||
# maximum progress at each color
|
||||
*[ls.progress[instance.max_winning_moves-1][s, 5] for s in range(0, instance.num_suits)],
|
||||
*[ls.progress[instance.max_winning_moves - 1][s, 5] for s in range(0, instance.num_suits)],
|
||||
|
||||
# played every color/value combination (NOTE: redundant, but makes solving faster)
|
||||
*[
|
||||
Or(
|
||||
And(ls.discard[m][i], ls.play[m])
|
||||
for m in range(first_turn, instance.max_winning_moves)
|
||||
for i in range(instance.deck_size)
|
||||
if game_state.deck[i] == DeckCard(s, r)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
if r > game_state.stacks[s]
|
||||
]
|
||||
And(ls.discard[m][i], ls.play[m])
|
||||
for m in range(first_turn, instance.max_winning_moves)
|
||||
for i in range(instance.deck_size)
|
||||
if game_state.deck[i] == hanab_game.DeckCard(s, r)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
if r > game_state.stacks[s]
|
||||
]
|
||||
)
|
||||
|
||||
constraints = And(*[valid_move(m) for m in range(first_turn, instance.max_winning_moves)], win)
|
||||
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
|
||||
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
|
||||
|
||||
model = get_model(constraints)
|
||||
if model:
|
||||
|
@ -304,11 +321,11 @@ def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int
|
|||
solution = evaluate_model(model, copy.deepcopy(game_state), ls)
|
||||
return True, solution
|
||||
else:
|
||||
#conj = list(conjunctive_partition(constraints))
|
||||
#print('statements: {}'.format(len(conj)))
|
||||
#ucore = get_unsat_core(conj)
|
||||
#print('unsat core size: {}'.format(len(ucore)))
|
||||
#for f in ucore:
|
||||
# conj = list(conjunctive_partition(constraints))
|
||||
# print('statements: {}'.format(len(conj)))
|
||||
# ucore = get_unsat_core(conj)
|
||||
# print('unsat core size: {}'.format(len(ucore)))
|
||||
# for f in ucore:
|
||||
# print(f.serialize())
|
||||
return False, None
|
||||
|
||||
|
@ -322,24 +339,29 @@ def log_model(model, cur_game_state, ls: Literals):
|
|||
logger.debug('=== move {} ==='.format(m))
|
||||
logger.debug('clues: {}'.format(model.get_py_value(ls.clues[m])))
|
||||
logger.debug('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i])))
|
||||
logger.debug('draw: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, cur_game_state.instance.deck_size) if model.get_py_value(ls.draw[m][i])))
|
||||
logger.debug('discard: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i])))
|
||||
logger.debug('draw: ' + ', '.join(
|
||||
'{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, cur_game_state.instance.deck_size) if
|
||||
model.get_py_value(ls.draw[m][i])))
|
||||
logger.debug('discard: ' + ', '.join(
|
||||
'{}: {}'.format(i, deck[i]) for i in range(cur_game_state.instance.deck_size) if
|
||||
model.get_py_value(ls.discard[m][i])))
|
||||
logger.debug('pace: {}'.format(model.get_py_value(ls.pace[m])))
|
||||
for s in range(0, cur_game_state.instance.num_suits):
|
||||
logger.debug('progress {}: '.format(COLOR_INITIALS[s]) + ''.join(str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
|
||||
logger.debug('progress {}: '.format(constants.COLOR_INITIALS[s]) + ''.join(
|
||||
str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
|
||||
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
|
||||
logger.debug(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m])))
|
||||
|
||||
|
||||
|
||||
# given the initial game state and the model found by the SAT solver,
|
||||
# evaluates the model to produce a full game history
|
||||
def evaluate_model(model, cur_game_state: GameState, ls: Literals) -> GameState:
|
||||
def evaluate_model(model, cur_game_state: hanab_game.GameState, ls: Literals) -> hanab_game.GameState:
|
||||
for m in range(len(cur_game_state.actions), cur_game_state.instance.max_winning_moves):
|
||||
if model.get_py_value(ls.dummyturn[m]) or cur_game_state.is_over():
|
||||
break
|
||||
if model.get_py_value(ls.discard_any[m]):
|
||||
card_idx = next(i for i in range(0, cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i]))
|
||||
card_idx = next(
|
||||
i for i in range(0, cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i]))
|
||||
if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]):
|
||||
cur_game_state.play(card_idx)
|
||||
else:
|
||||
|
@ -348,39 +370,3 @@ def evaluate_model(model, cur_game_state: GameState, ls: Literals) -> GameState:
|
|||
cur_game_state.clue()
|
||||
|
||||
return cur_game_state
|
||||
|
||||
|
||||
|
||||
def run_deck():
|
||||
puzzle = True
|
||||
if puzzle:
|
||||
deck_str = 'p5 p3 b4 r5 y4 y4 y5 r4 b2 y2 y3 g5 g2 g3 g4 p4 r3 b2 b3 b3 p4 b1 p2 b1 b1 p2 p1 p1 g1 r4 g1 r1 r3 r1 g1 r1 p1 b4 p3 g2 g3 g4 b5 y1 y1 y1 r2 r2 y2 y3'
|
||||
|
||||
deck = [DeckCard(COLOR_INITIALS.index(c[0]), int(c[1])) for c in deck_str.split(" ")]
|
||||
num_p = 5
|
||||
else:
|
||||
deck_str = "15gfvqluvuwaqnmrkpkaignlaxpjbmsprksfcddeybfixchuhtwo"
|
||||
deck_str = "15diuknfwhqbplsrlkxjuvfbwyacoaxgtudcerskqfnhpgampmiv"
|
||||
deck_str = "15jdxlpobvikrnhkslcuwggimtphafquqfvcwadampxkeyfrbnsu"
|
||||
deck = decompress_deck(deck_str)
|
||||
num_p = 6
|
||||
|
||||
print(deck)
|
||||
|
||||
gs = GameState(HanabiInstance(deck, num_p))
|
||||
if puzzle:
|
||||
gs.play(2)
|
||||
else:
|
||||
strat = GreedyStrategy(gs)
|
||||
for _ in range(17):
|
||||
strat.make_move()
|
||||
|
||||
solvable, sol = solve_sat(gs, 0)
|
||||
if solvable:
|
||||
print(sol)
|
||||
print(link(sol))
|
||||
else:
|
||||
print('unsolvable')
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_deck()
|
||||
|
|
21
test.py
21
test.py
|
@ -1,18 +1,9 @@
|
|||
import json
|
||||
|
||||
import alive_progress
|
||||
import requests
|
||||
|
||||
from variants import Variant
|
||||
from variants import Suit, variant_name
|
||||
from site_api import *
|
||||
from download_data import download_games, detailed_export_game
|
||||
from check_game import check_game
|
||||
from compress import link
|
||||
from database.database import conn, cur
|
||||
|
||||
from database.init_database import init_database_tables, populate_static_tables
|
||||
from hanabi.live.variants import Variant
|
||||
from hanabi.live.variants import Suit
|
||||
from hanabi.live.download_data import download_games, detailed_export_game
|
||||
from hanabi.database.database import conn, cur
|
||||
|
||||
from hanabi.hanabi_cli import hanabi_cli
|
||||
|
||||
def find_double_dark_games():
|
||||
cur.execute("SELECT variants.id, variants.name, count(suits.id) from variants "
|
||||
|
@ -74,6 +65,8 @@ def export_all_seeds():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
hanabi_cli()
|
||||
exit(0)
|
||||
find_double_dark_games()
|
||||
exit(0)
|
||||
var_id = 964532
|
||||
|
|
Loading…
Reference in a new issue