381 lines
17 KiB
Python
381 lines
17 KiB
Python
from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, ExactlyOne, get_model, get_atoms, get_formula_size, get_unsat_core
|
|
from pysmt.rewritings import conjunctive_partition
|
|
import json
|
|
from typing import List
|
|
from concurrent.futures import ProcessPoolExecutor
|
|
|
|
from compress import DeckCard, Action, ActionType, link, decompress_deck
|
|
from greedy_solver import GameState, GreedyStrategy
|
|
|
|
COLORS = 'rygbp'
|
|
STANDARD_HAND_SIZE = {2: 5, 3: 5, 4: 4, 5: 4, 6: 3}
|
|
NUM_STRIKES_TO_LOSE = 3
|
|
|
|
|
|
# literals to model game as sat instance to check for feasibility
|
|
# variants 'throw it in a hole not handled', 'clue starved' and 'up or down' currently not handled
|
|
class Literals():
|
|
# num_suits is total number of suits, i.e. also counts the dark suits
|
|
# default distribution among all suits is assumed
|
|
def __init__(self, num_players, num_suits, num_dark_suits=0):
|
|
assert ( 2 <= num_players <= 6 )
|
|
|
|
## some game parameters
|
|
self.num_players = num_players
|
|
self.num_suits = num_suits
|
|
self.num_dark_suits = num_dark_suits
|
|
|
|
self.hand_size = STANDARD_HAND_SIZE[num_players]
|
|
self.num_strikes = NUM_STRIKES_TO_LOSE
|
|
self.deck_size = 10 * num_suits - 5 * num_dark_suits
|
|
self.distributed_cards = self.num_players * self.hand_size
|
|
self.draw_pile_size = self.deck_size - self.distributed_cards
|
|
|
|
## maximum number of moves in any game that can achieve max score
|
|
# each suit gives 15 moves, as we can play and discard 5 cards each and give 5 clues. dark suits only give 5 moves, since no discards are added
|
|
# number of cards that remain in players hands after end of game. they cost 2 turns each, since we cannot discard them and also have one clue less
|
|
# 8 clues at beginning, one further clue for each suit but one (the clue of the last 5 is never useful since it is gained in the extra-round)
|
|
# subtract a further move for a second 5-clue that can't be used in 5 or 6-player games, since the extraround starts too soon
|
|
self.max_moves = 15 * num_suits - 10 * num_dark_suits \
|
|
- 2 * num_players * (self.hand_size - 1) \
|
|
+ 8 + (num_suits - 1) \
|
|
+ (-1 if num_players >= 5 else 0)
|
|
|
|
###
|
|
# note that we generate 'literals' always one out of boundary and set them to explicit truth values. This makes sat formulation easier but has no actual overhead in solving it
|
|
# move are numbered starting with 0
|
|
|
|
# clues[m][i] == "after move m we have at least i clues"
|
|
self.clues = {
|
|
-1: { i: Bool(i < 9) for i in range(0, 10) } # we have 8 clues after turn -1
|
|
, **{
|
|
m: {
|
|
0: Bool(True), # always at least 0 clues
|
|
**{ i: Symbol('m{}clues{}'.format(m, i)) for i in range(1, 9) },
|
|
9: Bool(False) # never 9 or more clues. This will implicitly forbid discarding at 8 clues later
|
|
}
|
|
for m in range(self.max_moves)
|
|
}
|
|
}
|
|
|
|
# strikes[m][i] == "after move m we have at least i strikes"
|
|
self.strikes = {
|
|
-1: {i: Bool(i == 0) for i in range(0, self.num_strikes + 1)} # no strikes when we start
|
|
, **{
|
|
m: {
|
|
0: Bool(True),
|
|
**{ s: Symbol('m{}strikes{}'.format(m,s)) for s in range(1, self.num_strikes) },
|
|
self.num_strikes: Bool(False) # never so many clues that we lose. Implicitly forbids striking out
|
|
}
|
|
for m in range(self.max_moves)
|
|
}
|
|
}
|
|
|
|
# extraturn[m] = "turn m is a move part of the extra round or a dummy turn"
|
|
self.extraround = {
|
|
-1: Bool(False)
|
|
, **{
|
|
m: Bool(False) if m < self.draw_pile_size else Symbol('m{}extra'.format(m)) # it takes at least as many turns as cards in the draw pile to start the extra round
|
|
for m in range(0, self.max_moves)
|
|
}
|
|
}
|
|
|
|
# dummyturn[m] = "turn m is a dummy nurn and not actually part of the game"
|
|
self.dummyturn = {
|
|
-1: Bool(False)
|
|
, **{
|
|
m: Bool(False) if m < self.draw_pile_size + self.num_players else Symbol('m{}dummy'.format(m))
|
|
for m in range(0, self.max_moves)
|
|
}
|
|
}
|
|
|
|
# draw[m][i] == "at move m we play/discard deck[i]"
|
|
self.discard = {
|
|
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(self.deck_size)}
|
|
for m in range(self.max_moves)
|
|
}
|
|
|
|
# draw[m][i] == "at move m we draw deck card i"
|
|
self.draw = {
|
|
-1: { i: Bool(i == self.distributed_cards - 1) for i in range(self.distributed_cards - 1, self.deck_size) }
|
|
, **{
|
|
m: {
|
|
self.distributed_cards - 1: Bool(False),
|
|
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(self.distributed_cards, self.deck_size)}
|
|
}
|
|
for m in range(self.max_moves)
|
|
}
|
|
}
|
|
|
|
# strike[m] = "at move m we get a strike"
|
|
self.strike = {
|
|
-1: Bool(False)
|
|
, **{
|
|
m: Symbol('m{}newstrike'.format(m))
|
|
for m in range(self.max_moves)
|
|
}
|
|
}
|
|
|
|
# progress[m][card = (suitIndex, rank)] == "after move m we have played in suitIndex up to rank"
|
|
self.progress = {
|
|
-1: {(s, r): Bool(r == 0) for s in range(0, self.num_suits) for r in range(0, 6)} # at start, have only played rank zero
|
|
, **{
|
|
m: {
|
|
**{(s, 0): Bool(True) for s in range(0, self.num_suits)},
|
|
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, self.num_suits) for r in range(1, 6)}
|
|
}
|
|
for m in range(self.max_moves)
|
|
}
|
|
}
|
|
|
|
## Utility variables
|
|
|
|
# discard_any[m] == "at move m we play/discard a card"
|
|
self.discard_any = { m: Symbol('m{}discard_any'.format(m)) for m in range(self.max_moves) }
|
|
|
|
# draw_any[m] == "at move m we draw a card"
|
|
self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(self.max_moves)}
|
|
|
|
# play[m] == "at move m we play a card"
|
|
self.play = {m: Symbol('m{}play'.format(m)) for m in range(self.max_moves)}
|
|
|
|
# play5[m] == "at move m we play a 5"
|
|
self.play5 = {m: Symbol('m{}play5'.format(m)) for m in range(self.max_moves)}
|
|
|
|
# incr_clues[m] == "at move m we obtain a clue"
|
|
self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(self.max_moves)}
|
|
|
|
|
|
def solve(game_state: GameState):
|
|
ls = Literals(game_state.num_players, game_state.num_suits, game_state.num_dark_suits)
|
|
|
|
##### setup of initial game state
|
|
|
|
# properties used later to model valid moves
|
|
num_dark_suits = game_state.num_dark_suits
|
|
num_suits = game_state.num_suits
|
|
deck = game_state.deck
|
|
next_draw = game_state.progress
|
|
|
|
starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands]
|
|
|
|
first_turn = len(game_state.actions)
|
|
|
|
# set initial clues
|
|
for i in range(0,10):
|
|
ls.clues[first_turn - 1][i] = Bool(i <= game_state.clues)
|
|
|
|
# set initial strikes
|
|
for i in range(0, game_state.num_strikes + 1):
|
|
ls.strikes[first_turn - 1][i] = Bool(i <= game_state.strikes)
|
|
|
|
# check if extraround has started (usually not)
|
|
ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players)
|
|
ls.dummyturn[first_turn -1] = Bool(False)
|
|
|
|
# set recent draws: important to model progress
|
|
# we just pretend that the last card drawn was in fact drawn last turn,
|
|
# regardless of when it was actually drawn
|
|
for neg_turn in range(1, min(9, first_turn + 2)):
|
|
for i in range(game_state.num_players * game_state.hand_size, game_state.deck_size):
|
|
ls.draw[first_turn - neg_turn][i] = Bool(neg_turn == 1 and i == game_state.progress - 1)
|
|
# forbid re-drawing of the last card drawn
|
|
for m in range(first_turn, ls.max_moves):
|
|
ls.draw[m][game_state.progress - 1] = Bool(False)
|
|
|
|
|
|
# model initial progress
|
|
for s in range(0, game_state.num_suits):
|
|
for r in range(0, 6):
|
|
ls.progress[first_turn - 1][s, r] = Bool(r <= game_state.stacks[s])
|
|
|
|
### Now, model all valid moves
|
|
|
|
valid_move = lambda m: And(
|
|
# in dummy turns, nothing can be discarded
|
|
Implies(ls.dummyturn[m], Not(ls.discard_any[m])),
|
|
|
|
# definition of discard_any
|
|
Iff(ls.discard_any[m], Or(ls.discard[m][i] for i in range(ls.deck_size))),
|
|
|
|
# definition of draw_any
|
|
Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(next_draw, ls.deck_size))),
|
|
|
|
# ls.draw implies ls.discard (and converse true before the ls.extraround)
|
|
Implies(ls.draw_any[m], ls.discard_any[m]),
|
|
Implies(ls.discard_any[m], Or(ls.extraround[m], ls.draw_any[m])),
|
|
|
|
# ls.play requires ls.discard
|
|
Implies(ls.play[m], ls.discard_any[m]),
|
|
|
|
# definition of ls.play5
|
|
Iff(ls.play5[m], And(ls.play[m], Or(ls.discard[m][i] for i in range(ls.deck_size) if deck[i].rank == 5))),
|
|
|
|
# definition of ls.incr_clues
|
|
Iff(ls.incr_clues[m], And(ls.discard_any[m], Implies(ls.play[m], And(ls.play5[m], Not(ls.clues[m-1][8]))))),
|
|
|
|
# change of ls.clues
|
|
*[Iff(ls.clues[m][i], Or(ls.clues[m-1][i+1], And(ls.clues[m-1][i], Or(ls.discard_any[m], ls.dummyturn[m])), And(ls.clues[m-1][i-1], ls.incr_clues[m]))) for i in range(1, 9)],
|
|
|
|
## more than 8 clues not allowed, ls.discarding produces a strike
|
|
# Note that this means that we will never strike while not at 8 clues.
|
|
# It's easy to see that if there is any solution to the instance, then there is also one where we only strike at 8 clues
|
|
# (or not at all) -> Just strike later if neccessary
|
|
# So, we decrease the solution space with this formulation, but do not change whether it's empty or not
|
|
Iff(ls.strike[m], And(ls.discard_any[m], Not(ls.play[m]), ls.clues[m-1][8])),
|
|
|
|
# change of strikes
|
|
*[Iff(ls.strikes[m][i], Or(ls.strikes[m-1][i], And(ls.strikes[m-1][i-1], ls.strike[m]))) for i in range(1, ls.num_strikes + 1)],
|
|
|
|
# less than 0 clues not allowed
|
|
Implies(Not(ls.discard_any[m]), Or(ls.clues[m-1][1], ls.dummyturn[m])),
|
|
|
|
# we can only draw card i if the last ls.drawn card was i-1
|
|
*[Implies(ls.draw[m][i], Or(And(ls.draw[m0][i-1], *[Not(ls.draw_any[m1]) for m1 in range(m0+1, m)]) for m0 in range(max(first_turn - 1, m-9), m))) for i in range(next_draw, ls.deck_size)],
|
|
|
|
# we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula)
|
|
AtMostOne(ls.draw[m][i] for i in range(next_draw, ls.deck_size)),
|
|
|
|
# we can only discard a card if we drew it earlier...
|
|
*[Implies(ls.discard[m][i], Or(ls.draw[m0][i] for m0 in range(m-ls.num_players, first_turn - 1, -ls.num_players))) for i in range(next_draw, ls.deck_size)],
|
|
|
|
# ...or if it was part of the initial hand
|
|
*[Not(ls.discard[m][i]) for i in range(0, next_draw) if i not in starting_hands[m % ls.num_players] ],
|
|
|
|
# we can only discard a card if we did not discard it yet
|
|
*[Implies(ls.discard[m][i], And(Not(ls.discard[m0][i]) for m0 in range(m-ls.num_players, first_turn - 1, -ls.num_players))) for i in range(ls.deck_size)],
|
|
|
|
# we can only discard at most one card (FIXME: avoid quadratic formula)
|
|
AtMostOne(ls.discard[m][i] for i in range(ls.deck_size)),
|
|
|
|
# we can only play a card if it matches the progress
|
|
*[Implies(
|
|
And(ls.discard[m][i], ls.play[m]),
|
|
And(
|
|
Not(ls.progress[m-1][deck[i].suitIndex, deck[i].rank]),
|
|
ls.progress[m-1][deck[i].suitIndex, deck[i].rank-1 ]
|
|
)
|
|
)
|
|
for i in range(ls.deck_size)
|
|
],
|
|
|
|
# change of progress
|
|
*[
|
|
Iff(
|
|
ls.progress[m][s, r],
|
|
Or(
|
|
ls.progress[m-1][s, r],
|
|
And(ls.play[m], Or(ls.discard[m][i]
|
|
for i in range(0, ls.deck_size)
|
|
if deck[i] == DeckCard(s, r) ))
|
|
)
|
|
)
|
|
for s in range(0, ls.num_suits)
|
|
for r in range(1, 6)
|
|
],
|
|
|
|
# extra round bool
|
|
Iff(ls.extraround[m], Or(ls.extraround[m-1], ls.draw[m-1][ls.deck_size-1])),
|
|
|
|
# dummy turn bool
|
|
*[Iff(ls.dummyturn[m], Or(ls.dummyturn[m-1], ls.draw[m-1 - ls.num_players][ls.deck_size-1])) for i in range(0,1) if m >= ls.num_players]
|
|
)
|
|
|
|
win = And(
|
|
# maximum progress at each color
|
|
*[ls.progress[ls.max_moves-1][s, 5] for s in range(0, ls.num_suits)],
|
|
|
|
# played every color/value combination (NOTE: redundant, but makes solving faster)
|
|
*[
|
|
Or(
|
|
And(ls.discard[m][i], ls.play[m])
|
|
for m in range(first_turn, ls.max_moves)
|
|
for i in range(ls.deck_size)
|
|
if game_state.deck[i] == DeckCard(s, r)
|
|
)
|
|
for s in range(0, ls.num_suits)
|
|
for r in range(1, 6)
|
|
if r > game_state.stacks[s]
|
|
]
|
|
)
|
|
|
|
constraints = And(*[valid_move(m) for m in range(first_turn, ls.max_moves)], win)
|
|
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
|
|
|
|
model = get_model(constraints)
|
|
if model:
|
|
# print_model(model, game_state, ls)
|
|
solution = toJSON(model, game_state, ls)
|
|
return True, solution
|
|
else:
|
|
#conj = list(conjunctive_partition(constraints))
|
|
#print('statements: {}'.format(len(conj)))
|
|
#ucore = get_unsat_core(conj)
|
|
#print('unsat core size: {}'.format(len(ucore)))
|
|
#for f in ucore:
|
|
# print(f.serialize())
|
|
return False, None
|
|
|
|
def print_model(model, cur_game_state, ls: Literals):
|
|
deck = cur_game_state.deck
|
|
for m in range(ls.max_moves):
|
|
print('=== move {} ==='.format(m))
|
|
print('clues: ' + ''.join(str(i) for i in range(1, 9) if model.get_py_value(ls.clues[m][i])))
|
|
print('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i])))
|
|
print('draw: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, 50) if model.get_py_value(ls.draw[m][i])))
|
|
print('discard: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(50) if model.get_py_value(ls.discard[m][i])))
|
|
for s in range(0, ls.num_suits):
|
|
print('progress {}: '.format(COLORS[s]) + ''.join(str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
|
|
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
|
|
print(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m])))
|
|
|
|
|
|
def toJSON(model, cur_game_state: GameState, ls: Literals) -> dict:
|
|
for m in range(len(cur_game_state.actions), ls.max_moves):
|
|
if model.get_py_value(ls.dummyturn[m]):
|
|
break
|
|
if model.get_py_value(ls.discard_any[m]):
|
|
card_idx = next(i for i in range(0, ls.deck_size) if model.get_py_value(ls.discard[m][i]))
|
|
if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]):
|
|
cur_game_state.play(card_idx)
|
|
else:
|
|
cur_game_state.discard(card_idx)
|
|
else:
|
|
cur_game_state.clue()
|
|
|
|
return cur_game_state.to_json()
|
|
|
|
def run_deck():
|
|
puzzle = True
|
|
if puzzle:
|
|
deck_str = 'p5 p3 b4 r5 y4 y4 y5 r4 b2 y2 y3 g5 g2 g3 g4 p4 r3 b2 b3 b3 p4 b1 p2 b1 b1 p2 p1 p1 g1 r4 g1 r1 r3 r1 g1 r1 p1 b4 p3 g2 g3 g4 b5 y1 y1 y1 r2 r2 y2 y3'
|
|
|
|
deck = [DeckCard(COLORS.index(c[0]), int(c[1])) for c in deck_str.split(" ")]
|
|
num_p = 5
|
|
else:
|
|
deck_str = "15gfvqluvuwaqnmrkpkaignlaxpjbmsprksfcddeybfixchuhtwo"
|
|
deck = decompress_deck(deck_str)
|
|
num_p = 4
|
|
|
|
print(deck)
|
|
|
|
gs = GameState(num_p, deck)
|
|
if puzzle:
|
|
gs.play(2)
|
|
pass
|
|
else:
|
|
strat = GreedyStrategy(gs)
|
|
for _ in range(18):
|
|
strat.make_move()
|
|
print(link(gs.to_json()))
|
|
|
|
|
|
solvable, sol = solve(gs)
|
|
if solvable:
|
|
print(sol)
|
|
print(link(sol))
|
|
else:
|
|
print('unsolvable')
|
|
|
|
if __name__ == "__main__":
|
|
run_deck()
|