adjust sat solver to handle mid-game states

This commit is contained in:
Maximilian Keßler 2023-03-15 11:13:17 +01:00
parent d71dba523c
commit f0c1f112a0
Signed by: max
GPG key ID: BCC5A619923C0BA5

165
sat.py
View file

@ -4,8 +4,8 @@ import json
from typing import List
from concurrent.futures import ProcessPoolExecutor
from compress import DeckCard, Action, ActionType, link
from greedy_solver import GameState
from compress import DeckCard, Action, ActionType, link, decompress_deck
from greedy_solver import GameState, GreedyStrategy
COLORS = 'rygbp'
STANDARD_HAND_SIZE = {2: 5, 3: 5, 4: 4, 5: 4, 6: 3}
@ -51,7 +51,7 @@ class Literals():
, **{
m: {
0: Bool(True), # always at least 0 clues
**{ i: Symbol('m{}c{}'.format(m, i)) for i in range(1, 9) },
**{ i: Symbol('m{}clues{}'.format(m, i)) for i in range(1, 9) },
9: Bool(False) # never 9 or more clues. This will implicitly forbid discarding at 8 clues later
}
for m in range(self.max_moves)
@ -64,7 +64,7 @@ class Literals():
, **{
m: {
0: Bool(True),
**{ s: Symbol('m{}s{}'.format(m,s)) for s in range(1, self.num_strikes) },
**{ s: Symbol('m{}strikes{}'.format(m,s)) for s in range(1, self.num_strikes) },
self.num_strikes: Bool(False) # never so many clues that we lose. Implicitly forbids striking out
}
for m in range(self.max_moves)
@ -75,7 +75,7 @@ class Literals():
self.extraround = {
-1: Bool(False)
, **{
m: Bool(False) if m < self.draw_pile_size else Symbol('m{}e'.format(m)) # it takes at least as many turns as cards in the draw pile to start the extra round
m: Bool(False) if m < self.draw_pile_size else Symbol('m{}extra'.format(m)) # it takes at least as many turns as cards in the draw pile to start the extra round
for m in range(0, self.max_moves)
}
}
@ -84,14 +84,14 @@ class Literals():
self.dummyturn = {
-1: Bool(False)
, **{
m: Bool(False) if m < self.draw_pile_size + self.num_players else Symbol('m{}dt'.format(m))
m: Bool(False) if m < self.draw_pile_size + self.num_players else Symbol('m{}dummy'.format(m))
for m in range(0, self.max_moves)
}
}
# draw[m][i] == "at move m we play/discard deck[i]"
self.discard = {
m: {i: Symbol('m{}-{}'.format(m, i)) for i in range(self.deck_size)}
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(self.deck_size)}
for m in range(self.max_moves)
}
@ -101,7 +101,7 @@ class Literals():
, **{
m: {
self.distributed_cards - 1: Bool(False),
**{i: Symbol('m{}+{}'.format(m, i)) for i in range(self.distributed_cards, self.deck_size)}
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(self.distributed_cards, self.deck_size)}
}
for m in range(self.max_moves)
}
@ -111,7 +111,7 @@ class Literals():
self.strike = {
-1: Bool(False)
, **{
m: Symbol('m{}s+'.format(m))
m: Symbol('m{}newstrike'.format(m))
for m in range(self.max_moves)
}
}
@ -122,7 +122,7 @@ class Literals():
, **{
m: {
**{(s, 0): Bool(True) for s in range(0, self.num_suits)},
**{(s, r): Symbol('m{}:{}{}'.format(m, s, r)) for s in range(0, self.num_suits) for r in range(1, 6)}
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, self.num_suits) for r in range(1, 6)}
}
for m in range(self.max_moves)
}
@ -131,29 +131,66 @@ class Literals():
## Utility variables
# discard_any[m] == "at move m we play/discard a card"
self.discard_any = { m: Symbol('m{}d'.format(m)) for m in range(self.max_moves) }
self.discard_any = { m: Symbol('m{}discard_any'.format(m)) for m in range(self.max_moves) }
# draw_any[m] == "at move m we draw a card"
self.draw_any = {m: Symbol('m{}D'.format(m)) for m in range(self.max_moves)}
self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(self.max_moves)}
# play[m] == "at move m we play a card"
self.play = {m: Symbol('m{}p'.format(m)) for m in range(self.max_moves)}
self.play = {m: Symbol('m{}play'.format(m)) for m in range(self.max_moves)}
# play5[m] == "at move m we play a 5"
self.play5 = {m: Symbol('m{}p5'.format(m)) for m in range(self.max_moves)}
self.play5 = {m: Symbol('m{}play5'.format(m)) for m in range(self.max_moves)}
# incr_clues[m] == "at move m we obtain a clue"
self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(self.max_moves)}
def solve(game_state: GameState):
ls = Literals(game_state.num_players, game_state.num_suits, game_state.num_dark_suits)
def solve(deck: List[DeckCard], num_players=5):
##### setup of initial game state
num_suits = max(map(lambda card: card.suitIndex, deck)) + 1
num_dark_suits = (len(deck) - 10 * num_suits) // (-5)
# properties used later to model valid moves
num_dark_suits = game_state.num_dark_suits
num_suits = game_state.num_suits
deck = game_state.deck
next_draw = game_state.progress
ls = Literals(num_players, num_suits, num_dark_suits)
starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands]
first_turn = len(game_state.actions)
# set initial clues
for i in range(0,10):
ls.clues[first_turn - 1][i] = Bool(i <= game_state.clues)
# set initial strikes
for i in range(0, game_state.num_strikes + 1):
ls.strikes[first_turn - 1][i] = Bool(i <= game_state.strikes)
# check if extraround has started (usually not)
ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players)
ls.dummyturn[first_turn -1] = Bool(False)
# set recent draws: important to model progress
# we just pretend that the last card drawn was in fact drawn last turn,
# regardless of when it was actually drawn
for neg_turn in range(1, min(9, first_turn + 2)):
for i in range(game_state.num_players * game_state.hand_size, game_state.deck_size):
ls.draw[first_turn - neg_turn][i] = Bool(neg_turn == 1 and i == game_state.progress - 1)
# forbid re-drawing of the last card drawn
for m in range(first_turn, ls.max_moves):
ls.draw[m][game_state.progress - 1] = Bool(False)
# model initial progress
for s in range(0, game_state.num_suits):
for r in range(0, 6):
ls.progress[first_turn - 1][s, r] = Bool(r <= game_state.stacks[s])
### Now, model all valid moves
valid_move = lambda m: And(
# in dummy turns, nothing can be discarded
Implies(ls.dummyturn[m], Not(ls.discard_any[m])),
@ -162,7 +199,7 @@ def solve(deck: List[DeckCard], num_players=5):
Iff(ls.discard_any[m], Or(ls.discard[m][i] for i in range(ls.deck_size))),
# definition of draw_any
Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(ls.distributed_cards, ls.deck_size))),
Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(next_draw, ls.deck_size))),
# ls.draw implies ls.discard (and converse true before the ls.extraround)
Implies(ls.draw_any[m], ls.discard_any[m]),
@ -194,19 +231,19 @@ def solve(deck: List[DeckCard], num_players=5):
Implies(Not(ls.discard_any[m]), Or(ls.clues[m-1][1], ls.dummyturn[m])),
# we can only draw card i if the last ls.drawn card was i-1
*[Implies(ls.draw[m][i], Or(And(ls.draw[m0][i-1], *[Not(ls.draw_any[m1]) for m1 in range(m0+1, m)]) for m0 in range(max(-1, m-9), m))) for i in range(ls.distributed_cards, ls.deck_size)],
*[Implies(ls.draw[m][i], Or(And(ls.draw[m0][i-1], *[Not(ls.draw_any[m1]) for m1 in range(m0+1, m)]) for m0 in range(max(first_turn - 1, m-9), m))) for i in range(next_draw, ls.deck_size)],
# we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula)
AtMostOne(ls.draw[m][i] for i in range(ls.distributed_cards, ls.deck_size)),
AtMostOne(ls.draw[m][i] for i in range(next_draw, ls.deck_size)),
# we can only discard a card if we drew it earlier...
*[Implies(ls.discard[m][i], Or(ls.draw[m0][i] for m0 in range(m-ls.num_players, -1, -ls.num_players))) for i in range(ls.distributed_cards, ls.deck_size)],
*[Implies(ls.discard[m][i], Or(ls.draw[m0][i] for m0 in range(m-ls.num_players, first_turn - 1, -ls.num_players))) for i in range(next_draw, ls.deck_size)],
# ...or if it was part of the initial hand
*[Not(ls.discard[m][i]) for i in range(0, ls.distributed_cards) if i // ls.hand_size != m % ls.num_players],
*[Not(ls.discard[m][i]) for i in range(0, next_draw) if i not in starting_hands[m % ls.num_players] ],
# we can only discard a card if we did not discard it yet
*[Implies(ls.discard[m][i], And(Not(ls.discard[m0][i]) for m0 in range(m-ls.num_players, -1, -ls.num_players))) for i in range(ls.deck_size)],
*[Implies(ls.discard[m][i], And(Not(ls.discard[m0][i]) for m0 in range(m-ls.num_players, first_turn - 1, -ls.num_players))) for i in range(ls.deck_size)],
# we can only discard at most one card (FIXME: avoid quadratic formula)
AtMostOne(ls.discard[m][i] for i in range(ls.deck_size)),
@ -252,73 +289,93 @@ def solve(deck: List[DeckCard], num_players=5):
*[
Or(
And(ls.discard[m][i], ls.play[m])
for m in range(ls.max_moves)
for m in range(first_turn, ls.max_moves)
for i in range(ls.deck_size)
if deck[i] == DeckCard(s, r)
if game_state.deck[i] == DeckCard(s, r)
)
for s in range(0, ls.num_suits)
for r in range(1, 6)
if r > game_state.stacks[s]
]
)
constraints = And(*[valid_move(m) for m in range(ls.max_moves)], win)
constraints = And(*[valid_move(m) for m in range(first_turn, ls.max_moves)], win)
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
model = get_model(constraints)
if model:
# print_model(model, deck)
solution = toJSON(model, deck, ls)
# print_model(model, game_state, ls)
solution = toJSON(model, game_state, ls)
return True, solution
else:
return False, None
#conj = list(conjunctive_partition(constraints))
#print('statements: {}'.format(len(conj)))
#ucore = get_unsat_core(conj)
#print('unsat core size: {}'.format(len(ucore)))
#for f in ucore:
# print(f.serialize())
return False, None
def print_model(model, deck, num_players):
draw = globals()['draw'][num_players]
for m in range(max_moves[num_players]):
print('=== move {} ==='.format(m))
print('clues: ' + ''.join(str(i) for i in range(1, 9) if model.get_py_value(clues[m][i])))
print('strikes: ' + ''.join(str(i) for i in range(1, NUM_STRIKES) if model.get_py_value(strikes[m][i])))
print('draw: ' + ', '.join('{} [{}{}]'.format(i, deck[i][0], deck[i][1]) for i in range(20, 50) if model.get_py_value(draw[m][i])))
print('discard: ' + ', '.join('{} [{}{}]'.format(i, deck[i][0], deck[i][1]) for i in range(50) if model.get_py_value(discard[m][i])))
for c in COLORS:
print('progress {}: '.format(c) + ''.join(str(k) for k in range(1, 6) if model.get_py_value(progress[m][c, k])))
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
print(', '.join(f for f in flags if model.get_py_value(globals()[f][m])))
def toJSON(model, deck: List[DeckCard], ls: Literals) -> dict:
gs = GameState(ls.num_players, deck)
def print_model(model, cur_game_state, ls: Literals):
deck = cur_game_state.deck
for m in range(ls.max_moves):
print('=== move {} ==='.format(m))
print('clues: ' + ''.join(str(i) for i in range(1, 9) if model.get_py_value(ls.clues[m][i])))
print('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i])))
print('draw: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, 50) if model.get_py_value(ls.draw[m][i])))
print('discard: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(50) if model.get_py_value(ls.discard[m][i])))
for s in range(0, ls.num_suits):
print('progress {}: '.format(COLORS[s]) + ''.join(str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
print(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m])))
def toJSON(model, cur_game_state: GameState, ls: Literals) -> dict:
for m in range(len(cur_game_state.actions), ls.max_moves):
if model.get_py_value(ls.dummyturn[m]):
break
if model.get_py_value(ls.discard_any[m]):
card_idx = next(i for i in range(0, ls.deck_size) if model.get_py_value(ls.discard[m][i]))
if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]):
gs.play(card_idx)
cur_game_state.play(card_idx)
else:
gs.discard(card_idx)
cur_game_state.discard(card_idx)
else:
gs.clue()
cur_game_state.clue()
return gs.to_json()
return cur_game_state.to_json()
def run_deck():
deck_str = 'p5 p3 b4 r5 y4 y4 y5 r4 b2 y2 y3 g5 g2 g3 g4 p4 r3 b2 b3 b3 p4 b1 p2 b1 b1 p2 p1 p1 g1 r4 g1 r1 r3 r1 g1 r1 p1 b4 p3 g2 g3 g4 b5 y1 y1 y1 r2 r2 y2 y3'
puzzle = True
if puzzle:
deck_str = 'p5 p3 b4 r5 y4 y4 y5 r4 b2 y2 y3 g5 g2 g3 g4 p4 r3 b2 b3 b3 p4 b1 p2 b1 b1 p2 p1 p1 g1 r4 g1 r1 r3 r1 g1 r1 p1 b4 p3 g2 g3 g4 b5 y1 y1 y1 r2 r2 y2 y3'
deck = [DeckCard(COLORS.index(c[0]), int(c[1])) for c in deck_str.split(" ")]
num_p = 5
else:
deck_str = "15gfvqluvuwaqnmrkpkaignlaxpjbmsprksfcddeybfixchuhtwo"
deck = decompress_deck(deck_str)
num_p = 4
deck = [DeckCard(COLORS.index(c[0]), int(c[1])) for c in deck_str.split(" ")]
print(deck)
solvable, sol = solve(deck, num_players=5)
gs = GameState(num_p, deck)
if puzzle:
gs.play(2)
pass
else:
strat = GreedyStrategy(gs)
for _ in range(18):
strat.make_move()
print(link(gs.to_json()))
solvable, sol = solve(gs)
if solvable:
print(sol)
print(link(sol))
else:
print('unsolvable')
if __name__ == "__main__":
run_deck()