132 lines
No EOL
3.8 KiB
C++
132 lines
No EOL
3.8 KiB
C++
// Algorithm generating a minimum spanning tree using Kruskal's algorithm
|
|
// Authors: Georǵi Kocharyan
|
|
|
|
#include <iostream>
|
|
#include <cstdio>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <queue>
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <functional>
|
|
#include "../../weighted_graph.h"
|
|
#include <tuple>
|
|
|
|
|
|
struct key_compare
|
|
{
|
|
bool operator()(const std::tuple<int, int, double>& l, const std::tuple<int, int, double>& r)
|
|
{
|
|
return std::get<2>(l) < std::get<2>(r);
|
|
}
|
|
};
|
|
|
|
void next_edge(WeightedGraph const & G, std::vector<std::list<int>> & elements, std::vector<int> component) {
|
|
|
|
}
|
|
|
|
void kruskal(WeightedGraph const & G) {
|
|
// preprocessing: remove all double edges except the minimal ones
|
|
|
|
WeightedGraph H = G.remove_parallel();
|
|
double total_weight = 0;
|
|
|
|
// preprocessing: create a vector of lists tracking the elements of the components
|
|
|
|
std::vector<std::list<int>> elements;
|
|
elements.resize(H.num_nodes());
|
|
for (int i = 0; i < H.num_nodes(); i++)
|
|
{
|
|
elements[i].push_back(i);
|
|
}
|
|
|
|
// preprocessing: create a vector tracking which component each element belongs to
|
|
|
|
std::vector<int> component;
|
|
component.resize(H.num_nodes());
|
|
for (int i = 0; i < H.num_nodes(); i++)
|
|
{
|
|
component[i] = i;
|
|
}
|
|
|
|
// preprocessing: create a vector containing all edges in O(m)
|
|
// then sort them according to their weight
|
|
|
|
std::vector<std::tuple<int, int, double>> edges;
|
|
edges.resize(H.num_edges());
|
|
int count = 0;
|
|
for (int i = 0; i < H.num_nodes(); i++)
|
|
{
|
|
for (const auto& j : H.adjList(i))
|
|
{
|
|
edges[count] = std::make_tuple(i,j.first,j.second);
|
|
count++;
|
|
}
|
|
}
|
|
std::sort(edges.begin(), edges.end(),key_compare());
|
|
|
|
for (const auto& edge : edges)
|
|
{
|
|
// check if edge connects two of the same component
|
|
if (!(component[std::get<0>(edge)]==component[std::get<1>(edge)]))
|
|
{
|
|
// output edge
|
|
std::cout << std::get<0>(edge) << "-" << std::get<1>(edge) << "\t" << std::get<2>(edge) << std::endl;
|
|
total_weight = total_weight + std::get<2>(edge);
|
|
// make the components of each node the same
|
|
// the larger component absorbs the second to guarantee O(mlogn) runtime
|
|
if (elements[component[std::get<0>(edge)]].size() >= elements[component[std::get<1>(edge)]].size())
|
|
{
|
|
// move all elements of second component to first
|
|
int moved = component[std::get<1>(edge)];
|
|
int movedto = component[std::get<0>(edge)];
|
|
for (const auto& node : (elements[moved]))
|
|
{
|
|
elements[movedto].push_back(node);
|
|
component[node] = movedto;
|
|
}
|
|
elements[moved].clear();
|
|
}
|
|
else
|
|
{
|
|
// move all elements of first component to second
|
|
int moved = component[std::get<0>(edge)];
|
|
int movedto = component[std::get<1>(edge)];
|
|
for (const auto& node : (elements[moved]))
|
|
{
|
|
elements[movedto].push_back(node);
|
|
component[node] = movedto;
|
|
}
|
|
elements[moved].clear();
|
|
}
|
|
}
|
|
|
|
}
|
|
std::cout << "The total weight of the MST is " << total_weight << std::endl;
|
|
}
|
|
|
|
// example of a CONNECTED input graph
|
|
|
|
int main() {
|
|
|
|
int size = 8;
|
|
WeightedGraph G(size);
|
|
G.add_edge(3,4,2);
|
|
G.add_edge(4,3,3);
|
|
G.add_edge(5,6,6);
|
|
G.add_edge(6,7,1);
|
|
G.add_edge(1,2,3);
|
|
G.add_edge(2,3,8);
|
|
G.add_edge(7,5,0.2);
|
|
G.add_edge(7,3,9);
|
|
G.add_edge(0,3,1);
|
|
G.add_edge(3,0,5);
|
|
G.add_edge(4,6,3);
|
|
G.add_edge(0,7,0.5);
|
|
G.add_edge(4,2,1);
|
|
|
|
kruskal(G);
|
|
|
|
return 0;
|
|
|
|
} |