// Algorithm generating a minimum spanning tree using Kruskal's algorithm // Authors: GeorĒµi Kocharyan #include #include #include #include #include "../../weighted_graph.h" struct key_compare { bool operator()(const std::tuple& l, const std::tuple& r) { return std::get<2>(l) < std::get<2>(r); } }; struct Edge { // todo: use type alias int from; int to; double weight; bool operator<(Edge const & other) const { return weight < other.weight; } }; void kruskal(WeightedGraph const & G) { // preprocessing: remove all double edges except the minimal ones WeightedGraph H = G.remove_parallel(); double total_weight = 0; // preprocessing: create a vector of lists tracking the elements of the components std::vector> elements; elements.resize(H.num_nodes()); for (int i = 0; i < H.num_nodes(); i++) { elements[i].push_back(i); } // preprocessing: create a vector tracking which component each element belongs to std::vector component; component.resize(H.num_nodes()); for (int i = 0; i < H.num_nodes(); i++) { component[i] = i; } // preprocessing: create a vector containing all edges in O(m) // then sort them according to their weight // todo: use std::vector std::vector> edges; edges.reserve(H.num_edges()); for (int i = 0; i < H.num_nodes(); i++) { for (const auto& j : H.adjList(i)) { edges.emplace_back(i,j.first,j.second); } } std::sort(edges.begin(), edges.end(), key_compare()); for (const auto& edge : edges) { // check if edge connects two of the same component if (component[std::get<0>(edge)] != component[std::get<1>(edge)]) { // output edge std::cout << std::get<0>(edge) << "-" << std::get<1>(edge) << "\t" << std::get<2>(edge) << std::endl; total_weight += std::get<2>(edge); // make the components of each node the same // the larger component absorbs the second to guarantee O(mlogn) runtime // todo: avoid code duplication by moving out stuff from if-else int moved; int movedto; if (elements[component[std::get<0>(edge)]].size() >= elements[component[std::get<1>(edge)]].size()) { // move all elements of second component to first moved = component[std::get<1>(edge)]; movedto = component[std::get<0>(edge)]; } else { // move all elements of first component to second moved = component[std::get<0>(edge)]; movedto = component[std::get<1>(edge)]; } for (const auto& node : (elements[moved])) { elements[movedto].push_back(node); component[node] = movedto; } elements[moved].clear(); } } std::cout << "The total weight of the MST is " << total_weight << std::endl; } // example of a CONNECTED input graph int main() { int size = 8; WeightedGraph G(size); G.add_edge(3,4,2); G.add_edge(4,3,3); G.add_edge(5,6,6); G.add_edge(6,7,1); G.add_edge(1,2,3); G.add_edge(2,3,8); G.add_edge(7,5,0.2); G.add_edge(7,3,9); G.add_edge(0,3,1); G.add_edge(3,0,5); G.add_edge(4,6,3); G.add_edge(0,7,0.5); G.add_edge(4,2,1); kruskal(G); return 0; }