edmonds-matching-algorithm/graph.cpp

218 lines
6.9 KiB
C++

#include "graph.hpp" // always include corresponding header first
/**
* Note this included everything from the header similar to copy-pasting it here,
* including our two classes, the function declarations and all the includes.
* In this file we will actually implement the in- and output routines though,
* so we need to include the actual implementation of std::istream and std::ostream.
*/
#include <iostream>
/**
* We are also going to use stringstream in order to treat a line,
* which we have already read from the input, like an input stream.
*/
#include <sstream>
/**
* The execption header is used to terminate our program
* in the case of unexpected input,
* which is often the best way to handle such input.
* More complex programs may want to catch exceptions in
* surrouding code and either try to recover or help debug them.
*/
#include <stdexcept>
#include <cassert>
// Anonymous name spaces may be used to show the reader
// that a function will only be used in the current file.
namespace
{
// Using a function for converting the DIMACS node ids to and from our node ids
// makes the in and output code more understandable.
ED::NodeId from_dimacs_id(ED::size_type dimacs_node_id)
{
if (dimacs_node_id <= 0)
{
throw std::runtime_error("Non-positive DIMACS node id can not be converted.");
}
return dimacs_node_id - 1;
}
ED::size_type to_dimacs_id(ED::NodeId node_id)
{
return node_id + 1;
}
// Returns the first line which is not a comment, i.e. does not start with c.
std::string read_next_non_comment_line(std::istream & input)
{
std::string line;
do
{
if (!std::getline(input, line))
{
throw std::runtime_error("Unexpected end of DIMACS stream.");
}
}
while (line[0] == 'c');
return line;
}
} // end of anonymous namespace
namespace ED
{
/////////////////////////////////////////////
//! \c Node definitions
/////////////////////////////////////////////
void Node::add_neighbor(NodeId const id)
{
_neighbors.push_back(id);
}
/////////////////////////////////////////////
//! \c Graph definitions
/////////////////////////////////////////////
// Whenever reasonably possible you should prefer to use `:`
// to initalize the members of your class, instead of
// assigning values to them after they were default initialized.
// Note you should initialize them in the same order
// they were declare in back in the class body!
Graph::Graph(NodeId const num_nodes)
: _nodes(num_nodes)
, _num_edges(0)
{}
void Graph::add_edge(NodeId node1_id, NodeId node2_id)
{
// It is ok if your program crashes for garbage input,
// but it should be an explicit, deliberate choice, e.g. like this.
if (node1_id == node2_id)
{
throw std::runtime_error("ED::Graph class does not support loops!");
}
_nodes[node1_id].add_neighbor(node2_id);
_nodes[node2_id].add_neighbor(node1_id);
++_num_edges;
}
Graph Graph::read_dimacs(std::istream & input)
{
// Unfortunatley the common std input functions require us to first declare
// our variables and assign them the correct values only later.
// Because we want to avoid unitizalized variables, we use a new syntax
// added in c++17 to call the constuctor with no arguments,
// often called the default constructor: We write {} behind the variable name.
// When parsing the DIMACS format, there are some words we are not interested in.
// We read them into this variable and never use the afterwards.
std::string unused_word{};
// As we need to watch out for comments, we first need to read the input by line.
// In order to split non-comment lines into multiple variables we use a std::stringstream.
std::stringstream first_buffering_stream{};
// Note if you do not plan to modify a variable, always declare it as constant.
// This does not only prevent you from doing so accidently,
// but also helps anybody reading your code understand what you are doing,
// as there are less possiblities what can happen.
std::string const first_line = read_next_non_comment_line(input);
size_type num_nodes{};
size_type num_edges{};
first_buffering_stream << first_line;
first_buffering_stream >> unused_word >> unused_word >> num_nodes >> num_edges;
// Now we successively add edges to our graph;
Graph graph(num_nodes);
for (size_type i = 1; i <= num_edges; ++i)
{
// This works just as parsing the first line!
std::stringstream ith_buffering_stream{};
std::string const ith_line = read_next_non_comment_line(input);
size_type dimacs_node1{};
size_type dimacs_node2{};
ith_buffering_stream << ith_line;
ith_buffering_stream >> unused_word >> dimacs_node1 >> dimacs_node2;
graph.add_edge(from_dimacs_id(dimacs_node1), from_dimacs_id(dimacs_node2));
}
return graph;
}
std::ostream & operator<<(std::ostream & output, Graph const & graph)
{
// We use std::endl to write new lines here.
// If you prefer the new line character, \n on linux, that one works fine, too.
output << "p edge " << graph.num_nodes() << " " << graph.num_edges() << std::endl;
// We will need the id of the node we are at, so we write a plain old loop here.
for (NodeId node_id = 0; node_id < graph.num_nodes(); ++node_id)
{
Node const & node = graph.node(node_id);
// We do not need to keep track of the index neighbor_id has in node,
// so we can use this cool loop syntax introduced in c++11.
for (NodeId const & neighbor_id : node.neighbors())
{
// Note we iterate over each edge two times, so we use the following
// comparism to check if the edge was not yet written to str!
if (node_id < neighbor_id)
{
output << "e " << to_dimacs_id(node_id) << " " << to_dimacs_id(neighbor_id) << std::endl;
}
}
}
// Streams sometimes buffer their output.
// Once one is done with some output routine, it can make sense to flush them,
// which clears the buffer and writes the remaining output.
output << std::flush;
return output;
}
bool Graph::is_outer(NodeId const id) const {
return matched_neighbor(id) == id or \
ear_or_root_neighbor(matched_neighbor(id)) != matched_neighbor(id);
}
bool Graph::is_inner(NodeId const id) const
{
return ear_or_root_neighbor(id) != id and \
ear_or_root_neighbor(matched_neighbor(id)) == matched_neighbor(id);
}
bool Graph::is_out_of_forest(const ED::NodeId id) const
{
return matched_neighbor(id) != id and \
ear_or_root_neighbor(id) == id and \
ear_or_root_neighbor(matched_neighbor(id)) == matched_neighbor(id);
}
void Graph::reset_forest()
{
NodeId cur_id = 0;
for(auto & node : _nodes) {
node.ear_or_root_neighbor = cur_id;
node.root_of_ear_component = cur_id;
// Note that we do not change the matching itself here
++cur_id;
}
}
void Graph::reset_matching()
{
NodeId cur_id = 0;
for(auto & node : _nodes)
{
node.matched_neighbor = cur_id;
++cur_id;
}
}
} // namespace ED