#include "edmonds.h" #include using namespace ED; namespace Edmonds { void check_integrity(Graph const & graph) { for(NodeId id = 0; id < graph.num_nodes(); ++id) { // Check that μ encodes a valid matching NodeId matched = graph.matched_neighbor(id); if(matched != id) { assert(graph.matched_neighbor(matched) == id); } if (graph.is_out_of_forest(id)) { assert(graph.phi(id) == id); assert(graph.rho(id) == id); } else { // check for a path to the root, i.e. ρ(node) NodeId cur_node = id; while(cur_node != graph.rho(cur_node)) { // If the condition was true, then cur_node is outer, part of a blossom // and we want to follow its path // therefore, we check that both φ and μ are not the identity on this node // and point to vertices that have the same rho assert(graph.matched_neighbor(cur_node) != cur_node); assert(graph.phi(cur_node) != cur_node); assert(graph.rho(graph.matched_neighbor(cur_node)) == graph.rho(cur_node)); assert(graph.rho(graph.phi(cur_node)) == graph.rho(cur_node)); // now, walk along the matched edge cur_node = graph.matched_neighbor(cur_node); // now we want to walk along φ, this will again // - not be the identity // - result in a node that has the same rho assert(graph.phi(cur_node) != cur_node); assert(graph.rho(graph.phi(cur_node)) == graph.rho(cur_node)); cur_node = graph.matched_neighbor(graph.phi(cur_node)); } } if (not graph.is_outer(id)) { assert(graph.rho(id) == id); } } } /** * @return List of vertices of the x-r path, where r is the root of the * special blossom forest component x belongs to. * * @note This assumes that the values of μ, φ and ρ represent a special * blossom forest on the graph when this method is called. * **/ std::vector path_to_forest_root(Graph const & graph, NodeId id) { std::vector retval; retval.push_back(id); while (graph.matched_neighbor(id) != id) { id = graph.matched_neighbor(id); retval.push_back(id); // Note that it is guaranteed that this does not produce a loop: // We are traversing the path to a root of the forest, // but we know that each root is exposed by M, so after traversing // the matching edge, we cannot have reached a root. id = graph.phi(id); retval.push_back(id); } return retval; } NodeId find_outer_vertex(Graph const & graph) { for(NodeId id = 0; id < graph.num_nodes(); ++id) { if (not graph.node(id).scanned and graph.is_outer(id)) { return id; } } return invalid_node_id; } void maximum_matching_from_initial_matching(Graph & graph) { graph.reset_forest(); NodeId id; while((id = find_outer_vertex(graph)) != invalid_node_id) { for(NodeId neighbor_id : graph.node(id).neighbors()) { check_integrity(graph); std::cout << "Check passed" << std::endl; if (graph.is_out_of_forest(neighbor_id)) { std::cout << "Grow forest" << std::endl; // Grow Forest graph.node(neighbor_id).phi = id; } else if (graph.is_outer(neighbor_id) and graph.rho(id) != graph.rho(neighbor_id)) { std::vector x_path = path_to_forest_root(graph, id); std::vector y_path = path_to_forest_root(graph, neighbor_id); if (x_path.back() != y_path.back()) { std::cout << "Augment" << std::endl; // Paths are disjoint -> augment graph.node(x_path.front()).matched_neighbor = y_path.front(); graph.node(y_path.front()).matched_neighbor = x_path.front(); // TODO: put this into own method? for(size_t i = 1; i < x_path.size(); i += 2) { graph.node(x_path[i]).matched_neighbor = x_path[i+1]; graph.node(x_path[i+1]).matched_neighbor = x_path[i]; } for(size_t i = 1; i < y_path.size(); i += 2) { graph.node(y_path[i]).matched_neighbor = y_path[i+1]; graph.node(y_path[i+1]).matched_neighbor = y_path[i]; } // Note that since this is tail-recursion, this will not generate // new stack frames in OPT mode graph.reset_forest(); break; } else { std::cout << "Contract blossom" << std::endl; // Paths are not disjoint -> shrink blossom size_t distance_from_x = x_path.size() - 1; size_t distance_from_y = y_path.size() - 1; while (distance_from_x > 0 and distance_from_y > 0 and \ x_path[distance_from_x - 1] == y_path[distance_from_y - 1]) { --distance_from_x; --distance_from_y; } // found first vertex of x_path \cap y_path while (graph.rho(x_path[distance_from_x]) != x_path[distance_from_x]) { ++distance_from_x; ++distance_from_y; }; // found first vertex fixed by rho NodeId blossom_root_id = x_path[distance_from_x]; for(size_t i = 1; i <= distance_from_x; i += 2) { if (graph.rho(graph.phi(x_path[i])) != blossom_root_id) { graph.node(graph.phi(x_path[i])).phi = x_path[i]; } } for(size_t i = 1; i <= distance_from_y; i += 2) { if (graph.rho(graph.phi(y_path[i])) != blossom_root_id) { graph.node(graph.phi(y_path[i])).phi = y_path[i]; } } if (graph.rho(x_path.front()) != blossom_root_id) { graph.node(x_path.front()).phi = y_path.front(); } if (graph.rho(y_path.front()) != blossom_root_id) { graph.node(y_path.front()).phi = x_path.front(); } // Update root indices for(size_t i = 0; i <= distance_from_x; ++i) { graph.node(x_path[i]).rho = blossom_root_id; } for(size_t i = 0; i <= distance_from_y; ++i) { graph.node(y_path[i]).rho = blossom_root_id; } } } } graph.node(id).scanned = true; } }; void find_greedy_matching(Graph & graph) { graph.reset_matching(); for(NodeId node_id = 0; node_id < graph.num_nodes(); ++node_id) { if (graph.matched_neighbor(node_id) == node_id) { for(NodeId neighbor_id : graph.node(node_id).neighbors()) { if(graph.matched_neighbor(neighbor_id) == neighbor_id) { graph.node(neighbor_id).matched_neighbor = node_id; graph.node(node_id).matched_neighbor = neighbor_id; } } } } } Graph maximum_matching(Graph & graph) { //find_greedy_matching(graph); graph.reset_matching(); maximum_matching_from_initial_matching(graph); ED::Graph matching = ED::Graph(graph.num_nodes()); for (NodeId id = 0; id < graph.num_nodes(); ++id) { if (graph.matched_neighbor(id) > id) { matching.add_edge(id, graph.matched_neighbor(id)); } } return matching; } }