edmonds-matching-algorithm/src/edmonds.cpp

201 lines
6.4 KiB
C++
Raw Normal View History

2023-11-04 17:49:41 +01:00
#include "edmonds.h"
2023-11-05 13:11:59 +01:00
#include <iostream>
2023-11-04 17:49:41 +01:00
using namespace ED;
2023-11-04 17:49:41 +01:00
namespace Edmonds {
2023-11-05 17:08:00 +01:00
void check_integrity(Graph const & graph)
{
for(NodeId id = 0; id < graph.num_nodes(); ++id)
{
NodeId matched = graph.matched_neighbor(id);
if(matched != id)
{
assert(graph.matched_neighbor(matched) == id);
}
if (not graph.is_outer(id))
{
2023-11-05 17:09:06 +01:00
assert(graph.rho(id) == id);
2023-11-05 17:08:00 +01:00
}
}
}
2023-11-04 19:01:43 +01:00
/**
* @return List of vertices of the x-r path, where r is the root of the
* special blossom forest component x belongs to.
*
* @note This assumes that the values of μ, φ and ρ represent a special
* blossom forest on the graph when this method is called.
* **/
std::vector<NodeId> path_to_forest_root(Graph const & graph, NodeId id)
2023-11-04 17:49:41 +01:00
{
std::vector<NodeId> retval;
retval.push_back(id);
while (graph.matched_neighbor(id) != id)
{
id = graph.matched_neighbor(id);
retval.push_back(id);
// Note that it is guaranteed that this does not produce a loop:
// We are traversing the path to a root of the forest,
// but we know that each root is exposed by M, so after traversing
// the matching edge, we cannot have reached a root.
2023-11-05 17:09:06 +01:00
id = graph.phi(id);
retval.push_back(id);
}
return retval;
}
2023-11-05 13:06:50 +01:00
NodeId find_outer_vertex(Graph const & graph)
{
for(NodeId id = 0; id < graph.num_nodes(); ++id)
{
if (not graph.node(id).scanned and graph.is_outer(id))
{
return id;
}
}
return invalid_node_id;
}
2023-11-05 13:16:16 +01:00
void maximum_matching_from_initial_matching(Graph & graph)
{
graph.reset_forest();
2023-11-05 13:06:50 +01:00
NodeId id;
while((id = find_outer_vertex(graph)) != invalid_node_id)
{
for(NodeId neighbor_id : graph.node(id).neighbors())
{
2023-11-05 17:08:00 +01:00
check_integrity(graph);
std::cout << "Check passed" << std::endl;
2023-11-05 13:06:50 +01:00
if (graph.is_out_of_forest(neighbor_id))
{
2023-11-05 17:08:00 +01:00
std::cout << "Grow forest" << std::endl;
2023-11-05 13:06:50 +01:00
// Grow Forest
2023-11-05 17:09:06 +01:00
graph.node(neighbor_id).phi = id;
2023-11-05 13:06:50 +01:00
}
2023-11-05 17:09:06 +01:00
else if (graph.is_outer(neighbor_id) and graph.rho(id) != graph.rho(neighbor_id))
2023-11-05 13:06:50 +01:00
{
std::vector<NodeId> x_path = path_to_forest_root(graph, id);
std::vector<NodeId> y_path = path_to_forest_root(graph, neighbor_id);
if (x_path.back() != y_path.back())
{
2023-11-05 17:08:00 +01:00
std::cout << "Augment" << std::endl;
2023-11-05 13:06:50 +01:00
// Paths are disjoint -> augment
graph.node(x_path.front()).matched_neighbor = y_path.front();
graph.node(y_path.front()).matched_neighbor = x_path.front();
// TODO: put this into own method?
for(size_t i = 1; i < x_path.size(); i += 2)
{
graph.node(x_path[i]).matched_neighbor = x_path[i+1];
graph.node(x_path[i+1]).matched_neighbor = x_path[i];
}
for(size_t i = 1; i < y_path.size(); i += 2)
{
graph.node(y_path[i]).matched_neighbor = y_path[i+1];
graph.node(y_path[i+1]).matched_neighbor = y_path[i];
}
// Note that since this is tail-recursion, this will not generate
// new stack frames in OPT mode
2023-11-05 17:08:00 +01:00
graph.reset_forest();
break;
}
2023-11-05 13:06:50 +01:00
else
{
2023-11-05 17:08:00 +01:00
std::cout << "Contract blossom" << std::endl;
2023-11-05 13:06:50 +01:00
// Paths are not disjoint -> shrink blossom
size_t distance_from_x = x_path.size() - 1;
size_t distance_from_y = y_path.size() - 1;
while (distance_from_x > 0 and distance_from_y > 0 and \
x_path[distance_from_x - 1] == y_path[distance_from_y - 1])
{
2023-11-05 13:06:50 +01:00
--distance_from_x;
--distance_from_y;
}
2023-11-05 13:06:50 +01:00
// found first vertex of x_path \cap y_path
2023-11-05 17:09:06 +01:00
while (graph.rho(x_path[distance_from_x]) != x_path[distance_from_x])
{
2023-11-05 13:06:50 +01:00
++distance_from_x;
++distance_from_y;
};
2023-11-05 17:09:06 +01:00
// found first vertex fixed by rho
2023-11-05 13:06:50 +01:00
NodeId blossom_root_id = x_path[distance_from_x];
for(size_t i = 1; i <= distance_from_x; i += 2)
{
2023-11-05 17:09:06 +01:00
if (graph.rho(graph.phi(x_path[i])) != blossom_root_id)
2023-11-04 19:46:31 +01:00
{
2023-11-05 17:09:06 +01:00
graph.node(graph.phi(x_path[i])).phi = x_path[i];
2023-11-04 19:46:31 +01:00
}
2023-11-05 13:06:50 +01:00
}
for(size_t i = 1; i <= distance_from_y; i += 2)
{
2023-11-05 17:09:06 +01:00
if (graph.rho(graph.phi(y_path[i])) != blossom_root_id)
2023-11-04 19:46:31 +01:00
{
2023-11-05 17:09:06 +01:00
graph.node(graph.phi(y_path[i])).phi = y_path[i];
2023-11-04 19:46:31 +01:00
}
2023-11-05 13:06:50 +01:00
}
2023-11-05 17:09:06 +01:00
if (graph.rho(x_path.front()) != blossom_root_id)
2023-11-05 13:06:50 +01:00
{
2023-11-05 17:09:06 +01:00
graph.node(x_path.front()).phi = y_path.front();
2023-11-05 13:06:50 +01:00
}
2023-11-05 17:09:06 +01:00
if (graph.rho(y_path.front()) != blossom_root_id)
2023-11-05 13:06:50 +01:00
{
2023-11-05 17:09:06 +01:00
graph.node(x_path.front()).phi = x_path.front();
2023-11-05 13:06:50 +01:00
}
2023-11-04 20:08:55 +01:00
2023-11-05 13:06:50 +01:00
// Update root indices
for(size_t i = 0; i <= distance_from_x; ++i)
{
2023-11-05 17:09:06 +01:00
graph.node(x_path[i]).rho = blossom_root_id;
2023-11-05 13:06:50 +01:00
}
for(size_t i = 0; i <= distance_from_y; ++i)
{
2023-11-05 17:09:06 +01:00
graph.node(y_path[i]).rho = blossom_root_id;
}
}
}
}
2023-11-05 13:06:50 +01:00
graph.node(id).scanned = true;
}
2023-11-04 17:49:41 +01:00
};
2023-11-04 19:49:54 +01:00
void find_greedy_matching(Graph & graph)
{
graph.reset_matching();
2023-11-04 19:49:54 +01:00
for(NodeId node_id = 0; node_id < graph.num_nodes(); ++node_id)
{
if (graph.matched_neighbor(node_id) == node_id) {
for(NodeId neighbor_id : graph.node(node_id).neighbors())
{
if(graph.matched_neighbor(neighbor_id) == neighbor_id)
{
graph.node(neighbor_id).matched_neighbor = node_id;
graph.node(node_id).matched_neighbor = neighbor_id;
}
}
}
}
}
Graph maximum_matching(Graph & graph) {
2023-11-05 13:46:29 +01:00
//find_greedy_matching(graph);
graph.reset_matching();
2023-11-05 13:16:16 +01:00
maximum_matching_from_initial_matching(graph);
ED::Graph matching = ED::Graph(graph.num_nodes());
for (NodeId id = 0; id < graph.num_nodes(); ++id)
{
if (graph.matched_neighbor(id) > id)
{
matching.add_edge(id, graph.matched_neighbor(id));
}
}
return matching;
}
2023-11-04 19:46:31 +01:00
}