second half of lec 2
This commit is contained in:
parent
d447c90043
commit
fb959f6738
3 changed files with 162 additions and 1 deletions
|
@ -9,7 +9,7 @@
|
|||
\usepackage{mkessler-math}
|
||||
|
||||
% Fancy theorem environments
|
||||
\usepackage[number in = section]{fancythm}
|
||||
\usepackage[number in = section, cache]{fancythm}
|
||||
|
||||
% Set up of different types of todonotes
|
||||
\usepackage{mkessler-todo}
|
||||
|
|
|
@ -229,6 +229,7 @@ The lecture notes are available on eCampus.
|
|||
The following is a very important corollary:
|
||||
|
||||
\begin{corollary}
|
||||
\label{cor:preimage-of-prime-ideal-is-prime}
|
||||
Let $f\colon A \to B$ be a ring homomorphism and $\mathfrak{p} \subset B$
|
||||
a prime ideal.
|
||||
Then $f^{-1}(\mathfrak{p}) \subset A$ is a prime ideal.
|
||||
|
|
|
@ -153,3 +153,163 @@ In particular, $k[x_1, \dotsc, x_n]$ is a unique factorization domain.
|
|||
\end{proof}
|
||||
|
||||
% end of first half
|
||||
|
||||
\begin{goal}
|
||||
We would like to show that if $k$ is algebraically closed,
|
||||
then every maximal ideal in $k[x_1, \dotsc, x_n]$ is of the form $\mathfrak{m}_P$
|
||||
for some point $P \in k^n$.
|
||||
|
||||
We have just seen this for $n = 1$, but not generally.
|
||||
\end{goal}
|
||||
|
||||
\begin{definition}
|
||||
Let $k$ be a field and $A$ a $k$-algebra.
|
||||
\begin{enumerate}[h]
|
||||
\item An element $a\in A$ is called \vocab{algebraic over $k$}
|
||||
if there exists $f\neq 0 \in k[x]$ with $f(a) = 0$.
|
||||
\item $A$ is called \vocab{algebraic over $k$}
|
||||
if all $a\in A$ are algebraic over $k$.
|
||||
\item A finite subset $\set{ a_1,\dotsc,a_n }\subset A $ is called
|
||||
\vocab{algebraically independent} if $\ev_{a_1, \dotsc, a_n} \colon k[x_1, \dotsc, x_n] \to A$ is injective.
|
||||
|
||||
A set $M\subset A$ is called algebraically independent if all finite subsets
|
||||
of $M$ are algebraically independent.
|
||||
\item If $A$ is a field, a \vocab{transcendence basis} for $A$ over $k$
|
||||
is an algebraically independent subset $M\subset A$ such that $A$ is algebraic
|
||||
over $k(M)$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
\begin{example}+
|
||||
$x^n\in k(x)$ is a transcendence basis of $k(x)$ over $k$ for all $n\geq 1$.
|
||||
\end{example}
|
||||
|
||||
\begin{theorem}[Existence of transcendence basis]
|
||||
\label{thm:transcendence-basis-completion}
|
||||
Let $L / K$ be a field extension.
|
||||
\begin{enumerate}[h]
|
||||
\item $M \subset L$ is a transcendence basis for $L / K$
|
||||
iff $M$ is maximally algebraically independent.
|
||||
\item If $M' \subset L$ is algebraically independent and $M'' \subset L$ is such that
|
||||
$L / K(M'')$ is algebraic,
|
||||
then there exists a transcendence basis with $M' \subset M \subset M' \cup M''$.
|
||||
\end{enumerate}
|
||||
In particular, transcendence bases exist.
|
||||
\end{theorem}
|
||||
|
||||
\begin{recall}
|
||||
If $A$ is an integral domain,
|
||||
the \vocab{field of fractions} $\Frac(A)$ of $A$ is the set of
|
||||
equivalence classes of $\frac{a}{b}$ with $a \in A, b\neq 0 \in A$
|
||||
under the relation $\frac { ac } { bc } = \frac{a}{b}$.
|
||||
\end{recall}
|
||||
|
||||
\begin{lemma}[Universal property of the field of fractions]
|
||||
\label{lm:universal-prop-of-field-of-fractions}
|
||||
Let $A$ be an integral domain and $f\colon A \to B$ a ring homomorphism.
|
||||
Then, $f$ factors through
|
||||
\begin{equation*}
|
||||
\begin{array}{c c l}
|
||||
A & \longrightarrow & \Frac(A) \\
|
||||
a & \longmapsto & \frac{a}{1}
|
||||
\end{array}
|
||||
\end{equation*}
|
||||
if and only if $f(A \setminus \set{ 0 } ) \subset B^{\times}$.
|
||||
\end{lemma}
|
||||
|
||||
\begin{lemma}
|
||||
\label{lm:integral-domain-algebraic-over-k-is-field}
|
||||
Let $A$ be an algebra over a field $k$.
|
||||
\begin{enumerate}[h]
|
||||
\item If $A$ is an integral domain and algebraic over $k$,
|
||||
then $A$ is a field.
|
||||
\item If $A$ is a field and contained in a finitely generated $k$-algebra,
|
||||
then $A$ is algebraic over $k$.
|
||||
\end{enumerate}
|
||||
\end{lemma}
|
||||
|
||||
\begin{oral}
|
||||
One might be tempted to deduce 2) from 1) by arguing that $A$
|
||||
is itself finitely generated over $k$ since it is contained in a finitely generated
|
||||
$k$-algebra.
|
||||
However, this is not true in general, as the following example shows.
|
||||
\end{oral}
|
||||
|
||||
\begin{example}+
|
||||
Let $k$ be a field and consider the finitely generated $k$-algebra.
|
||||
However, the subalgebra $B = k[x, xy, xy^2, xy^3, \dotsc]$ is not finitely generated.
|
||||
\end{example}
|
||||
|
||||
\begin{corollary}[Zariski's Lemma]
|
||||
\label{cor:zariski-lemma}
|
||||
Let $L/K$ be a field extension. If $L$ is finitely generated as a $K$-algebra,
|
||||
then $L / K$ is finite.
|
||||
\end{corollary}
|
||||
|
||||
\begin{note}
|
||||
The notions of being finitely generated as a $k$-algebra and being finitely generated
|
||||
as a field extension over $k$ are not the same.
|
||||
|
||||
For example, $k(x) / k$ is finitely generated as a field extension,
|
||||
but not as a $k$-algebra.
|
||||
\end{note}
|
||||
|
||||
\begin{corollary}
|
||||
Let $k$ be a field and let $A \to B$ be a morphism of $k$-algebras.
|
||||
Let $\mathfrak{m} \subset B$ be a maximal ideal.
|
||||
|
||||
If $B$ is finitely generated as a $k$-algebra, then $f^{-1}(\mathfrak{m})$ is maximal.
|
||||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
As in \autoref{cor:preimage-of-prime-ideal-is-prime}, by the homomorphism
|
||||
theorem we get a commutative diagram
|
||||
\[
|
||||
\begin{tikzcd}
|
||||
&
|
||||
A
|
||||
\ar[swap]{d}{}
|
||||
\ar{r}{}
|
||||
&
|
||||
B
|
||||
\ar{d}{}
|
||||
\\
|
||||
k
|
||||
\ar{r}
|
||||
&
|
||||
\faktor{A}{f^{-1}(\mathfrak{m})}
|
||||
\ar[swap,hook]{r}{}
|
||||
&
|
||||
\faktor{B}{\mathfrak{m}}
|
||||
\end{tikzcd}
|
||||
\]
|
||||
Since $B$ is finitely generated as a $k$-algebra, so is $B / \mathfrak{m}$.
|
||||
Since $B / \mathfrak{m}$ is also a field, by \autoref{cor:zariski-lemma}
|
||||
it is algebraic over $k$.
|
||||
|
||||
Hence, also $A / f^{-1}(\mathfrak{m})$ is algebraic over $k$.
|
||||
Since $A / f^{-1}(\mathfrak{m})$ is an integral domain,
|
||||
by \autoref{lm:integral-domain-algebraic-over-k-is-field},
|
||||
$f^{-1}(\mathfrak{m})$ is in fact maximal.
|
||||
\end{proof}
|
||||
|
||||
\begin{corollary}
|
||||
\label{cor:classification-of-max-ideals-in-polynomial-ring-over-alg-closed-field}
|
||||
Let $k$ be an algebraically closed field
|
||||
and $\mathfrak{m} \subset k [x_1, \dotsc, x_n]$ a maximal ideal.
|
||||
Then, there exists a point $P \in k^n$ such that $\mathfrak{m} = \mathfrak{m}_P$.
|
||||
\end{corollary}
|
||||
|
||||
\begin{corollary}[Hilbert's Nullstellensatz v1]
|
||||
Let $k$ be an algebraically closed field
|
||||
and $I \subsetneq k[x_1, \dotsc, x_n]$ a proper ideal.
|
||||
Then, there exists $P \in k^n$ such that $f(P) = 0$ for all $f\in I$.
|
||||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
By Zorn's lemma, there is some maximal ideal $\mathfrak{m}$ with
|
||||
$I \subset \mathfrak{m}$.
|
||||
By \autoref{cor:classification-of-max-ideals-in-polynomial-ring-over-alg-closed-field},
|
||||
$\mathfrak{m} = \mathfrak{m}_P = \ker(\ev_P)$ for some point $P \in k^n$.
|
||||
Hence, for all $f\in I$, $f(P) = \ev_P(f) = 0$.
|
||||
\end{proof}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue