Josia Pietsch
195ac2c378
Some checks are pending
Build latex and deploy / checkout (push) Waiting to run
126 lines
5.1 KiB
TeX
126 lines
5.1 KiB
TeX
\lecture{21}{2024-01-12}{Iterated Skew Shift}
|
|
|
|
\begin{refproof}{thm:taudminimal:help}
|
|
\gist{%
|
|
Suppose towards a contradiction that
|
|
$Y \times S^1$ contains a proper minimal subflow $Z$.
|
|
Consider the projection $\pi\colon Y \times S^1 \to Y$.
|
|
By minimality of $Y$, we have $\pi(Z) = Y$.
|
|
Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal,
|
|
so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.%
|
|
\footnote{actually $(1,\ldots,1, \theta) \cdot Z$, we identify $S^1$ and $\{0\}^d \times S^1 \subseteq Y \times S^1$.}
|
|
|
|
Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$.
|
|
$H$ is a closed subgroup of $S^1$.
|
|
% H is a rotation of Z containing 1 (?)
|
|
Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$, so this cannot be the case),
|
|
or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$
|
|
by \yaref{fact:tau1minimal}.
|
|
|
|
Note that if $(y, \beta) \in Z$ then for $t \in S^1$,
|
|
we have
|
|
\[
|
|
(y, \beta \cdot t) \in Z \iff t^m = 1.
|
|
\]
|
|
Therefore for every $y \in Y$, there are exactly $m$ many
|
|
$\xi \in S^1$
|
|
such that $(y, \xi) \in Z$.
|
|
|
|
Specifically for all $y$ there exists $\beta^{(y)} \in S^1$
|
|
such that $(y,\xi) \in Z$ iff
|
|
\[
|
|
\xi \in \{\beta^{(y)} \cdot t_1, \beta^{(y)} \cdot t_2, \ldots,\beta^{(y)} \cdot t_m\},
|
|
\]
|
|
where the $t_i \in S^1$
|
|
are such that
|
|
$t_i^m = 1$ for all $i$ and $i \neq j \implies t_i \neq t_j$,
|
|
i.e.~the $t_i$ are the $m$\textsuperscript{th} roots of unity.
|
|
|
|
Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$.
|
|
Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$
|
|
we get a continuous
|
|
function $\phi\colon Y \to S^1$
|
|
such that
|
|
\[
|
|
Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\},
|
|
\]
|
|
namely
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\phi\colon Y &\longrightarrow & S^1 \\
|
|
y &\longmapsto & (\beta^{(y)})^m
|
|
\end{IEEEeqnarray*}
|
|
Z is isomorphic to $m$ copies of the graph of that function, hence
|
|
the graph is closed, so the function is continuous.
|
|
|
|
Note that $f(Z)$ is homeomorphic to $Y$
|
|
(for every $y \in Y$, $\phi(y)$ is the unique element such that $(y,\phi(y)) \in f(Z)$).
|
|
|
|
\begin{claim}
|
|
$\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
We have $T(y, \xi) = (S(y), \sigma(y) \cdot \xi)$
|
|
(cf.~\yaref{rem:l20:sigma}).
|
|
$Z$ is invariant under $T$.
|
|
So for $(y, \xi) \in Z$ we get $T(y, \xi) = ({\color{red}S(y)}, {\color{blue}\sigma(y) \cdot \xi}) \in Z$.
|
|
Thus
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\phi({\color{red}S(y)}) &=& ({\color{blue}\sigma(y) \cdot \xi})^m\\
|
|
&=& (\sigma(y))^m \cdot \xi^m\\
|
|
&=& (\sigma(y))^m \cdot \phi(y).
|
|
\end{IEEEeqnarray*}
|
|
\end{subproof}
|
|
Applying $\gamma$ we obtain
|
|
\[
|
|
[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [x \mapsto (\sigma(\gamma(x))^n].
|
|
\]
|
|
$S\circ \gamma$ is homotopic to $\gamma$,
|
|
so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$.
|
|
Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$,
|
|
but that is a contradiction to (b) $\lightning$
|
|
}{
|
|
\begin{itemize}
|
|
\item $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$
|
|
($T(y, \xi) = (S(y), \sigma(y) + \xi)$),
|
|
$Y \coloneqq (S^1)^d$,
|
|
$\gamma: S^1 \to Y, x \mapsto (x,x,\ldots,x)$.
|
|
\item (a) $\gamma \simeq S \circ \gamma$.
|
|
\item (b) $\forall m \in \Z.~ [m \cdot \sigma \circ \gamma] = m$
|
|
($\sigma(\gamma(x)) = x$).
|
|
\item Suppose $Y \times S^1$ is not minimal.
|
|
Let $Z$ be a proper minimal subflow,
|
|
$\pi\colon Y \times S^1 \to Y$.
|
|
\item $\pi(Z) = Y$ ($Y$ minimal)
|
|
\item $Z + (0,\ldots,0,\theta)$ is minimal, so $\theta + Z = Z$
|
|
or $\theta + Z \cap Z = \emptyset$.
|
|
\item $H \coloneqq \{\theta \in S^1 : \theta + Z = Z\}$ (closed subgroup of $S^1$).
|
|
\begin{itemize}
|
|
\item $H \neq S^1$ as $Z$ is a proper subflow.
|
|
\item $H = \langle \frac{1}{m} \rangle$.
|
|
\end{itemize}
|
|
\item $(y, \beta) \in Z$, then $(y, \beta + t) \in Z \iff m \cdot t = 0$.
|
|
Pick $\beta^{(y)}$ such that $(y, \xi) \in Z \iff \xi \in \{\beta^{(y)} + \frac{n}{m} : n \in \N\}$.
|
|
\item Consider $(y, \xi) \mapsto (y, m \cdot \xi)$.
|
|
Get
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\phi\colon Y &\longrightarrow & S^1 \\
|
|
y &\longmapsto & m \beta^{(y)}
|
|
\end{IEEEeqnarray*}
|
|
continuous.
|
|
\item $\phi \circ S = \phi + m \sigma$:
|
|
$Z$ is $T$-invariant.
|
|
\item $[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [m \sigma \circ \gamma]$
|
|
$\implies [m \sigma \circ \gamma] = 0 \lightning$.
|
|
\end{itemize}
|
|
}
|
|
\end{refproof}
|
|
|
|
Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$.
|
|
\begin{theorem}
|
|
\label{thm:21:xnmaxiso}
|
|
$(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$
|
|
in $(X,\tau)$.
|
|
\end{theorem}
|
|
\begin{corollary}
|
|
The order of $(X,\tau)$ is $\omega$.
|
|
\end{corollary}
|