93 lines
3.2 KiB
TeX
93 lines
3.2 KiB
TeX
\tutorial{07}{2023-12-05}{}
|
|
% 17 / 20
|
|
|
|
\subsection{Exercise 2}
|
|
|
|
Recall \autoref{thm:analytic}.
|
|
|
|
Let $(A_i)_{i < \omega}$ be analytic subsets of a Polish space $X$.
|
|
|
|
$\bigcap_i A_i$ is $\Sigma^1_1$:
|
|
|
|
% Let $Y_i$ be Polish such that $f_i(Y_i) = A_i$.
|
|
% Let $Y \coloneqq \coprod Y_i$, $f = \coprod f_i$ and $Z = \prod Y_i$.
|
|
% Note that $Y$ and $Z$ are Polish.
|
|
% We can embed $Z$ into $Y^{\N}$.
|
|
%
|
|
% Define a tree $T$ on $Y$ as follows:
|
|
% $(y_0, \ldots, y_n) \in T$ iff
|
|
% \begin{itemize}
|
|
% \item $\forall 0 \le i \le n.~ y_i \in Y_i$ and
|
|
% \item $\forall i,j .~ f(y_i) = f(y_j)$.
|
|
% \end{itemize}
|
|
%
|
|
% Then $[T]$ consists of sequences $y = (y_n)$
|
|
% such that $\forall j \in \N.~f(y) \in \im (f_j)$,
|
|
% so $\forall y \in [T].~f(y) \in \bigcap_{i \in \N} \im(f_i) = \bigcap_{i \in \N} A_i$.
|
|
% $[T] \subseteq i(Z) \subseteq Y^{\N}$,
|
|
% and $[T]$ is closed.
|
|
%
|
|
%
|
|
% Other solution:
|
|
|
|
Let $Z = \prod Y_i$
|
|
and let $D \subseteq Z$
|
|
be defined by
|
|
\[
|
|
D \coloneqq \{(y_n) : f_i(y_i) = f_j(y_j) ~ \forall i,j\}.
|
|
\]
|
|
$D$ is closed,
|
|
at it is the preimage of the diagonal
|
|
under $Z \xrightarrow{(f_0,f_1,\ldots)} X^{\N}$.
|
|
Then $\bigcap A_i$ is the image of $D$
|
|
under $Z \xrightarrow{(y_n) \mapsto f_0(y_0)} X$.
|
|
|
|
\paragraph{Other solution}
|
|
Let $F_n \subseteq X \times \cN$ be closed,
|
|
and $C \subseteq X \times \cN^{\N}$ defined by
|
|
\[
|
|
C \coloneqq \{(x,(y^{(n)}) ) : \forall n.~(x, y^{(n)}) \in F_n\}.
|
|
\]
|
|
$C$ is closed
|
|
and $\bigcap A_i = \proj_X(C)$.
|
|
|
|
\subsection{Exercise 3}
|
|
|
|
\begin{itemize}
|
|
\item Make $X$ zero dimensional preserving the Borel structure.
|
|
\item \todo{Find a countable clopen base}
|
|
\item
|
|
\end{itemize}
|
|
|
|
|
|
\subsection{Exercise 4}
|
|
|
|
|
|
Proof of Schröder-Bernstein:
|
|
|
|
Let $X_0 \coloneqq X$, $Y_0 \coloneqq Y$
|
|
and define $X_{i+1} \coloneqq g(Y_i)$, $Y_{i+1 } \coloneqq g(X_i)$.
|
|
We have $X_{i+1} \subseteq X_i$ and similarly for $Y_i$.
|
|
$f$ and $g$ are bijections between
|
|
$X_\omega \coloneqq \bigcap X_i$ and $Y_\omega \coloneqq \bigcap Y_i$.
|
|
|
|
% https://q.uiver.app/#q=WzAsMTgsWzAsMCwiWCBcXHNldG1pbnVzIFhfXFxvbWVnYSJdLFswLDEsIllcXHNldG1pbnVzIFlfXFxvbWVnYSJdLFsxLDAsIj0iXSxbMSwxLCI9Il0sWzIsMCwiKFhfMCBcXHNldG1pbnVzIFhfMSkiXSxbMiwxLCIoWV8wIFxcc2V0bWludXMgWV8xKSJdLFs0LDEsIihZXzAgXFxzZXRtaW51cyBZXzEpIl0sWzYsMSwiKFlfMCBcXHNldG1pbnVzIFlfMSkiXSxbNCwwLCIoWF8wIFxcc2V0bWludXMgWF8xKSJdLFs2LDAsIihYXzAgXFxzZXRtaW51cyBYXzEpIl0sWzcsMCwiXFxjZG90cyJdLFs3LDEsIlxcY2RvdHMiXSxbMywwLCJcXGN1cCJdLFszLDEsIlxcY3VwIl0sWzUsMCwiXFxjdXAiXSxbNSwxLCJcXGN1cCJdLFs4LDFdLFs4LDBdLFs0LDYsImYiLDIseyJsYWJlbF9wb3NpdGlvbiI6NzB9XSxbNSw4LCJnIiwwLHsibGFiZWxfcG9zaXRpb24iOjEwfV0sWzksMTYsImYiLDAseyJsYWJlbF9wb3NpdGlvbiI6ODB9XSxbNywxNywiZyIsMCx7ImxhYmVsX3Bvc2l0aW9uIjoxMH1dXQ==
|
|
\[\begin{tikzcd}
|
|
{X \setminus X_\omega} & {=} & {(X_0 \setminus X_1)} & \cup & {(X_0 \setminus X_1)} & \cup & {(X_0 \setminus X_1)} & \cdots & {} \\
|
|
{Y\setminus Y_\omega} & {=} & {(Y_0 \setminus Y_1)} & \cup & {(Y_0 \setminus Y_1)} & \cup & {(Y_0 \setminus Y_1)} & \cdots & {}
|
|
\arrow["f"'{pos=0.7}, from=1-3, to=2-5]
|
|
\arrow["g"{pos=0.1}, from=2-3, to=1-5]
|
|
\arrow["f"{pos=0.8}, from=1-7, to=2-9]
|
|
\arrow["g"{pos=0.1}, from=2-7, to=1-9]
|
|
\end{tikzcd}\]
|
|
|
|
|
|
By \autoref{thm:lusinsouslin}
|
|
the injective image via a Borel set of a Borel set is Borel.
|
|
|
|
\autoref{thm:lusinsouslin} also gives that the inverse
|
|
of a bijective Borel map is Borel.
|
|
|
|
|
|
|
|
|