Josia Pietsch
5de0726c3c
Some checks failed
Build latex and deploy / checkout (push) Failing after 15m51s
193 lines
6.8 KiB
TeX
193 lines
6.8 KiB
TeX
\subsection{Sheet 2}
|
|
|
|
\tutorial{03}{2023-10-31}{}
|
|
|
|
|
|
% 15 / 16
|
|
|
|
\begin{remark}
|
|
$F_\sigma$ stands for \vocab{ferm\'e sum denumerable}.
|
|
\end{remark}
|
|
|
|
|
|
\nr 1
|
|
|
|
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
|
|
Define
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
f\colon X &\longrightarrow & 2^{\omega} \\
|
|
x &\longmapsto & (x_i)_{i < \omega}
|
|
\end{IEEEeqnarray*}
|
|
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
|
|
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
|
|
is open.
|
|
We have that $f$ is injective since $X$ is T1.
|
|
|
|
Let $f\colon X \hookrightarrow 2^\omega$ be such that
|
|
$f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\})$.
|
|
|
|
Let $V \subseteq 2^{\omega}$ be closed.
|
|
Then $2^{\omega} \setminus V$ is open, i.e.~has the form
|
|
$\bigcup_{i \in I} ((\prod_{j<n_j} X_{i,j}) \times 2^{\omega})$
|
|
for some $X_{i,j} \subseteq 2$.
|
|
As $2^{\omega}$ is second countable, we may assume $I$ to be countable.
|
|
|
|
Then $V = \bigcap_{i \in I} \left(2^{\omega} \setminus ((\prod_{i <n_j} X_{i,j}) \times 2^{\omega})\right)$.
|
|
Since $f$ is injective, we have $f^{-1}(\bigcap_{a \in A} a) = \bigcap_{a \in A} f^{-1}(a)$.
|
|
Thus it suffices to show that $f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
|
|
is $G_{\delta}$, as a countable intersection of $G_{\delta}$-sets
|
|
is $G_{\delta}$.
|
|
|
|
We have that $U_k \coloneqq f^{-1}(\{y = (y_i) \in 2^{\omega} : y_k = 1\})$
|
|
is open. Since $f$ is injective
|
|
$f^{-1}(\{y = (y_i) \in 2^{\omega} : y_k = 0\}) = X \setminus U_k$
|
|
is closed, in particular it is $G_\delta$.
|
|
Let $x = (x_1,\ldots, x_n) \in 2^{n} \setminus (\prod_{i < n} X_i)$.
|
|
Then $f^{-1}(\{x\} \times 2^\omega) = \bigcap_{i < n}\bigcap U'_n$
|
|
is $G_{\delta}$, were $U'_i = U_i$ if $x_k = i$
|
|
and $U'_i = X \setminus U_i$ otherwise.
|
|
|
|
Since $2^{n} \setminus \left( \prod_{i < n} X_i \right)$
|
|
is finite, we get that
|
|
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
|
|
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
|
|
|
|
|
|
|
|
\nr 2
|
|
\todo{handwritten solution}
|
|
(b)
|
|
Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
|
Suppose that $f(x^{(i)}) \to y$.
|
|
We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
|
Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
|
Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
|
|
|
|
|
\nr 3
|
|
\begin{example}
|
|
Consider
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
f\colon \R &\longrightarrow & [0,1] \\
|
|
\frac{p}{q} &\longmapsto & \frac{1}{q}\\
|
|
\R \setminus \Q \ni x &\longmapsto & 0
|
|
\end{IEEEeqnarray*}
|
|
Then $\osc_f(\frac{p}{q}) = \frac{1}{q}$
|
|
and $\osc_f(x) = 0$ for $x \not\in \Q$.
|
|
\end{example}
|
|
|
|
\begin{definition}
|
|
We say that $f\colon X \to Y$ is continuous
|
|
at $a \in X$,
|
|
if for $N$ a neighbourhood of $f(a)$ (i.e.~there exists
|
|
$f(a) \in U \overset{\text{open}}{\subseteq} N$,
|
|
then $f^{-1}(N)$ is a neighbourhood of $a$.
|
|
\end{definition}
|
|
|
|
\begin{theorem}[Kuratowski]
|
|
Let $X$ be metrizable, $Y$ completely metrizable,
|
|
$S \subseteq X$ and $f\colon S \to Y$ continuous.
|
|
Then $f$ can be extended to a continuous function $\tilde{f}$
|
|
on a $G_\delta$ set $G$ with $S \subseteq G \subseteq \overline{S}$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Let $G \coloneqq \overline{S} \cap \{x \in X | \osc_f(x) = 0\}$.
|
|
Clearly $S \subseteq G$ as $f$ is continouos on $f$.
|
|
\begin{claim}
|
|
$G$ is $G_\delta$
|
|
\end{claim}
|
|
\begin{subproof}
|
|
$\overline{S}$ is closed
|
|
and
|
|
\[
|
|
\bigcap_{n \ge 1} \{x : \osc_f(x) <\frac{1}{n}\}
|
|
\]
|
|
is an intersection of open sets.
|
|
\end{subproof}
|
|
is an intersection of open sets.
|
|
|
|
For $x \in G$, as $x \in \overline{S}$,
|
|
there exists $(x_n)_{x_n < \omega}$, $x_n \in S$
|
|
such that $x_n \to x$.
|
|
We have that $(f(x_n))_n$ is Cauchy,
|
|
as $\osc_f(x) = 0$.
|
|
|
|
\todo{Something is missing here}
|
|
\end{proof}
|
|
|
|
\begin{corollary}
|
|
Let $X$ be Polish and $Y \subseteq X$ Polish.
|
|
Then $Y$ is $G_{\delta}$.
|
|
\end{corollary}
|
|
\begin{proof}
|
|
\todo{TODO}
|
|
% Consider the identity $f\colon Y \hookrightarrow X$.
|
|
% Then $f$ can be extended to a $G_{\delta}$ set $G \subseteq X$
|
|
% with $Y \subseteq G \subseteq \overline{Y}$.
|
|
% $\tilde{f}$ and $\id_G$ agree on $Y$.
|
|
% $Y$ is dense in $G$ and the codomain of $f$ is Hausdorff.\todo{????}
|
|
% So $f = \id_G$, i.e.~$G = Y$.
|
|
\end{proof}
|
|
|
|
\nr 4
|
|
\begin{enumerate}[(1)]
|
|
\item $f$ is a topological embedding:
|
|
Consider a basic open set
|
|
$B = \prod_{i < n} X_i \times \omega^{\omega}$
|
|
for some $X_i \subseteq \omega$.
|
|
|
|
Then $f(B) = \left(\bigcup_{x \in \prod_{i<n} X_i} B_x \right) \cap f(\omega^{\omega})$
|
|
is open in $f(\omega^{\omega})$,
|
|
where $B_x \coloneqq \{0^{x_0}10^{x_1}1\ldots 10^{x_n-1}1\} \times 2^{\omega}$.
|
|
|
|
On the other hand let $C = \{x_0x_1x_2x_3x_4 \ldots x_{n-1}\}\times 2^{\omega}$
|
|
be some basic open set of $2^{\omega}$.
|
|
W.l.o.g.~$x_0x_1\ldots x_{n-1}$
|
|
has the form $0^{a_0}10^{a_1}1\ldots 10^{a_k}x_{n-1}$.
|
|
If $x_{n-1} = 1$,
|
|
we get
|
|
\[
|
|
f^{-1}(C \cap f(\omega^{\omega})) = \{(a_0,a_1,\ldots,a_k)\} \times \omega^{\omega}.
|
|
\]
|
|
In the case of $x_{n-1} = 0$,
|
|
it is
|
|
\[
|
|
f^{-1}(C \cap f(\omega^\omega)) = \bigcup_{b > a_k} \{(a_0,a_1,\ldots,a_{k-1}, b)\} \times \omega^{\omega}.
|
|
\]
|
|
In both cases the preimage is open.
|
|
|
|
|
|
\item $C \coloneqq 2^{\omega} \setminus f(\omega^\omega)$
|
|
is countable and dense in $2^{\omega}$.
|
|
|
|
We have $C = \{x \in 2^{\omega} | x_i = 0 \text{ for all but finitely many $i$}\} = \bigcup_{i < \omega} (2^{i} \times 1^{\omega})$.
|
|
Clearly this is countable.
|
|
|
|
For denseness take some $x \in 2^\omega$.
|
|
Let $x^{(n)}$ be defined by $x^{(n)}_i = x_i$ for $i < n$
|
|
and $x^{(n)}_i = 0$ for $i \ge n$.
|
|
Then $x^{(n)} \in C$ for all $n$,
|
|
and $x^{(n)}$ converges to $x$.
|
|
|
|
\item $f(\omega^\omega)$ is $G_\delta$:
|
|
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
f(\omega^\omega) &=& 2^\omega \setminus \left(\bigcup_{i < \omega} (2^{i} \times 1^{\omega})\right)\\
|
|
&=& \bigcap_{i < \omega} \left(2^{\omega} \setminus(2^{i} \times 1^{\omega})\right).
|
|
\end{IEEEeqnarray*}
|
|
\item $C$ as in (2) is homeomorphic to $\Q$.
|
|
|
|
Go to the right in the even digits, go to the left for the odd digits,
|
|
i.e.~let $C = (1,-1,1,-1, \ldots)$
|
|
and set $x < y$ iff $C \cdot x <_{\text{lex}} C \cdot y$,
|
|
where $<_{\text{lex}}$ denotes the lexicographical ordering.
|
|
Note that the order topology of $<$ on $C$
|
|
agrees with the subspace topology from $2^\omega$.
|
|
|
|
By Cantor's theorem for countable, unbounded, dense linear
|
|
linear orders,
|
|
we get an order isomorphism $C \leftrightarrow \Q$.
|
|
This is also a homeomorphism, as the topologies
|
|
on $C$ and $\Q$ are the respective order topologies.
|
|
\end{enumerate}
|