Josia Pietsch
11cdecd1da
Some checks are pending
Build latex and deploy / checkout (push) Waiting to run
195 lines
6.8 KiB
TeX
195 lines
6.8 KiB
TeX
\lecture{20}{2024-01-09}{The Infinite Torus}
|
|
|
|
\begin{example}
|
|
\footnote{This is the same as \yaref{ex:19:inftorus},
|
|
but with new notation.}
|
|
Let $X = (S^1)^{\N}$\footnote{We identify $S^1$ and $\faktor{\R}{\Z}$.}
|
|
and consider $\left(X, \Z \right)$
|
|
where the action is generated by
|
|
\[
|
|
\tau\colon (x_1,x_2,x_3,\ldots) \mapsto(x_1 + \alpha, x_1 + x_2, x_2 + x_3, \ldots)
|
|
\]
|
|
for some irrational $\alpha$.
|
|
\end{example}
|
|
\begin{remark}+
|
|
Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication)
|
|
or with $\faktor{\R}{\Z}$ (and use addition).
|
|
In the lecture both notations were used.% to make things extra confusing.
|
|
Here I'll try to only use multiplicative notation.
|
|
\end{remark}
|
|
We will be studying projections to the first $d$ coordinates,
|
|
i.e.
|
|
\[
|
|
\tau_d \colon (x_1,\ldots,x_d) \mapsto (e^{\i \alpha} x_1, x_1x_2, \ldots, x_{d-1}x_d).
|
|
\]
|
|
$\tau_d$ is called the \vocab{$d$-skew shift}.
|
|
For $d = 1$ we get the circle rotation $x \mapsto e^{\i \alpha} x$.
|
|
\begin{fact}
|
|
\label{fact:tau1minimal}
|
|
The circle rotation $x \mapsto e^{\i \alpha} x$ is minimal.
|
|
In fact, every subgroup of $S^1$ is either dense in $S^1$
|
|
or it is of the form
|
|
\[
|
|
H_m \coloneqq \{x \in S^1 : x^m = 0\}
|
|
\]
|
|
for some $m \in \Z$.
|
|
\end{fact}
|
|
\todo{Homework!}
|
|
We will show that $\tau_d$ is minimal for all $d$,
|
|
i.e.~every orbit is dense.
|
|
From this it will follow that $\tau$ is minimal.
|
|
|
|
Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
|
coordinates.
|
|
|
|
|
|
|
|
\begin{lemma}
|
|
\label{lem:lec20:1}
|
|
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
|
for some $n$.
|
|
Then there is a sequence of points $x_k$ with
|
|
\[\pi_{n-1}(x_k) = \pi_{n-1}(x) = \pi_{n-1}(x')\]
|
|
for all $k$
|
|
and
|
|
\[
|
|
F(x_k, x) \xrightarrow{k \to \infty} 0,
|
|
F(x_k, x') \xrightarrow{k \to \infty} 0,
|
|
\]
|
|
where $F$ is as in \yaref{def:F},
|
|
i.e.~$F(a,b) = \inf_{n \in \Z} d(\tau^n a, \tau^n b)$,
|
|
where $d$ is the metric on $X$,
|
|
$d((x_i), (y_i)) = \max_n \frac{1}{2^n} | x_n - y_n|$.% TODO use multiplicative notation
|
|
\end{lemma}
|
|
\begin{proof}
|
|
Let
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
x &=& (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1}, \alpha_n, \alpha_{n+1}, \alpha_{n+2},\ldots)\\
|
|
x' &=& (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1}, \alpha_n, \alpha'_{n+1}, \alpha'_{n+2},\ldots).\\
|
|
\end{IEEEeqnarray*}
|
|
We will choose $x_k$ of the form
|
|
\[
|
|
(\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1} \alpha_n e^{\i \beta_k}, \alpha_{n+1}, \alpha_{n+2}, \ldots),
|
|
\]
|
|
where $\beta_k$ is such that $\frac{\beta_k}{\pi}$ is irrational
|
|
and $|\beta_k| < 2^{-k}$.
|
|
Fix a sequence'(b)). of such $\beta_k$.
|
|
Then
|
|
\[d(x_k,x) = 2^{-n} |e^{\i \beta_k} - 1| < 2^{-n-k} \xrightarrow{k\to \infty} 0.\]
|
|
In particular $F(x_k, x) \to 0$.
|
|
|
|
We want to show that $F(x_k, x') < 2^{-n-k}$.
|
|
For $u, u' \in X$,
|
|
$u = (\xi_n)_{n \in \N}$,
|
|
$u' = (\xi'_n)_{n \in \N}$,
|
|
let $\frac{u}{u'} = (\frac{\xi_n}{\xi'_n})_{n \in \N}$
|
|
($X$ is a group).
|
|
|
|
We are interested in $F(x_k, x') = \inf_m d(\tau^m x_k, \tau^m x')$,
|
|
but it is easier to consider the distance between
|
|
their quotient and $1$.
|
|
Consider
|
|
\[
|
|
w_k \coloneqq \frac{x_k}{x'} = (\underbrace{1,\ldots,1}_{n-1}, e^{\i \beta_k}, \overbrace{\frac{\alpha_{n+1}}{\alpha'_{n+1}}, \frac{\alpha_{n+2}}{\alpha'_{n+2}}, \ldots}^{\mathclap{\text{not interesting}}}).
|
|
\]
|
|
\begin{claim}
|
|
$F(x_k, x') = \inf_m d(\sigma^m(w_k), 1)$,
|
|
where $\sigma(\xi_1, \xi_2, \ldots) = (\xi_1, \xi_1\xi_2, \xi_2\xi_3, \ldots)$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
F(u,u') &=& \inf_m d(\tau^m u, \tau^m u')\\
|
|
&=& \inf_m d(\frac{\tau^m u}{\tau^m u'}, 1)\\
|
|
&=& \inf_m d(\sigma^m\left( \frac{u}{u'} \right), 1).
|
|
\end{IEEEeqnarray*}
|
|
\end{subproof}
|
|
|
|
Fix $k$. Let $w^\ast = (1,\ldots,1, e^{\i \beta_k}, 1, \ldots)$.
|
|
By minimality of $(X,T)$ for any $\epsilon >0$,
|
|
there exists $m \in \Z$ such that
|
|
$d(\sigma^m w_k, w^\ast) < \epsilon$.
|
|
% TODO Think about this
|
|
Then
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\inf_m d(\sigma^m w_k, 1) &\le & \inf_m d(\sigma^m w_k, w^\ast) + d(w^\ast, 1)\\
|
|
&\le & 2^{-n} | e^{\i \beta_k}- 1|\\
|
|
&<& 2^{-n-k}.
|
|
\end{IEEEeqnarray*}
|
|
\end{proof}
|
|
|
|
|
|
\begin{definition}
|
|
For every continuous $f\colon S^1 \to S^1$, the
|
|
\vocab{winding number} $[f] \in \Z$
|
|
is the unique integer such that $f$ is homotopic%
|
|
\footnote{$f\colon Y \to Z$ and $g\colon Y \to Z$ are homotopic
|
|
iff there is $H\colon Y \times [0,1] \to \Z$
|
|
continuous such that $H(\cdot ,0) = f$ and $H(\cdot ,1) = g$.}
|
|
to the map
|
|
$x \mapsto x^{n}$.
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
\label{rem:l20:sigma}
|
|
Note that for
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\sigma\colon (S^1)^d &\longrightarrow & S^1 \\
|
|
(x_1,\ldots,x_d) &\longmapsto & x_d
|
|
\end{IEEEeqnarray*}
|
|
we have that $T = \tau_{d+1}$,
|
|
where
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
T\colon (S^1)^d \times S^1 &\longrightarrow & (S^1)^d \times S^1 \\
|
|
(y, x_{d+1}) &\longmapsto & (\tau_d(y), \sigma(y) x_{d+1}).
|
|
\end{IEEEeqnarray*}
|
|
\end{remark}
|
|
\begin{theorem}
|
|
\label{thm:taudminimal:help}
|
|
For every $d$ if $\tau_d$\footnote{more formally $((S^1)^d, \langle \tau_d \rangle)$}
|
|
is minimal, then $\tau_{d+1}$ is minimal.
|
|
\end{theorem}
|
|
\begin{corollary}
|
|
$\tau_d$ is minimal for all $d$.
|
|
\end{corollary}
|
|
\begin{proof}
|
|
$\tau_1$ is minimal (\yaref{fact:tau1minimal}).
|
|
Apply \yaref{thm:taudminimal:help}.
|
|
\end{proof}
|
|
\begin{corollary}
|
|
Since all the $\tau_d$ are minimal,
|
|
$\tau$ is minimal.
|
|
\end{corollary}
|
|
\begin{proof}
|
|
This follows from the definition of the product topology,
|
|
since for a basic open set $U = U_1 \times \ldots \times U_d \times (S^1)^{\infty}$
|
|
it suffices to analyze the first $d$ coordinates.
|
|
\end{proof}
|
|
|
|
\begin{refproof}{thm:taudminimal:help}
|
|
Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$.
|
|
Consider
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\gamma\colon S^1 &\longrightarrow & Y \\
|
|
x &\longmapsto & (x,x,\ldots,x).
|
|
\end{IEEEeqnarray*}
|
|
Note that
|
|
\begin{enumerate}[(a)]
|
|
\item $\gamma$ and $S \circ \gamma$ are homotopic
|
|
via
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\
|
|
(x, t)&\longmapsto & (x e^{\i t \alpha}, x^{t+1}, x^{t+1}, x^{t+1},\ldots, x^{t+1})
|
|
\end{IEEEeqnarray*}
|
|
\item For all $m \in \Z \setminus \{0\}$, we have
|
|
$[x \mapsto \left(\sigma(\gamma(x))\right)^m] = m \neq 0$,
|
|
since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$.
|
|
\end{enumerate}
|
|
|
|
\phantom\qedhere
|
|
\end{refproof}
|
|
|
|
|
|
|
|
|
|
|