Josia Pietsch
5de0726c3c
Some checks failed
Build latex and deploy / checkout (push) Failing after 15m51s
193 lines
6.5 KiB
TeX
193 lines
6.5 KiB
TeX
\lecture{12}{2023-11-24}{}
|
|
|
|
\begin{definition}
|
|
A tree $T$ is \vocab{ill-founded}
|
|
if it has an infinite branch,
|
|
i.e. $[T] \neq \emptyset$
|
|
Otherwise it is called \vocab{well-founded}.
|
|
Let
|
|
\[\IF \coloneqq \{T \in \Tr : T \text{ is ill-founded}\}\]
|
|
and
|
|
\[\WF \coloneqq \{T \in \Tr : T \text{ is well-founded}\}\]
|
|
\end{definition}
|
|
|
|
\begin{proposition}
|
|
\label{prop:ifs11}
|
|
$\IF \in \Sigma^1_1(\Tr)$.
|
|
\end{proposition}
|
|
\begin{proof}
|
|
We have
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
|
|
\end{IEEEeqnarray*}
|
|
|
|
Consider $D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$.
|
|
Note that this set is closed in $\Tr \times \cN$,
|
|
since it is a countable intersection of clopen sets.
|
|
% TODO Why clopen?
|
|
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
An analytic set $B$ in some Polish space $Y$
|
|
is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete})
|
|
iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$,
|
|
there exists a Borel function $f\colon X\to Y$
|
|
such that $x \in A \iff f(x) \in B$.
|
|
|
|
Similarly, define \vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete}).
|
|
\end{definition}
|
|
\begin{observe}
|
|
\leavevmode
|
|
\begin{itemize}
|
|
\item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete.
|
|
\item $\Sigma^1_1$-complete sets are never Borel:
|
|
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
|
|
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$
|
|
and $f\colon X \to Y$ Borel.
|
|
But then $f^{-1}(B)$ is Borel.
|
|
\end{itemize}
|
|
\end{observe}
|
|
|
|
\begin{theorem}
|
|
\label{thm:lec12:1}
|
|
Suppose that $A \subseteq \cN$ is analytic.
|
|
Then there is $f\colon \cN \to \Tr$\todo{Borel?}
|
|
such that $x \in A \iff f(x)$ is ill-founded.
|
|
\end{theorem}
|
|
For the proof we need some prerequisites:
|
|
\begin{enumerate}[1.]
|
|
\item Recall that for $S$ countable,
|
|
the pruned\footnote{no maximal elements, in particular this implies ill-founded if the tree is non empty.} trees
|
|
$T \subseteq S^{<\N}$ on $S$ correspond
|
|
to closed subsets of $S^{\N}$:
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
T &\longmapsto & [T]\\
|
|
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
|
|
\end{IEEEeqnarray*}
|
|
\todo{Copy from exercises}
|
|
\item \leavevmode\begin{definition}
|
|
If $T$ is a tree on $\N \times \N$
|
|
and $x \in \cN$,
|
|
then the \vocab{section at $x$}
|
|
%denoted $T(x)$,
|
|
is the following tree on $\N$ :
|
|
\[
|
|
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
|
|
\]
|
|
\end{definition}
|
|
\item \leavevmode
|
|
\begin{proposition}
|
|
\label{prop:lec12:2}
|
|
Let $A \subseteq \cN$.
|
|
The following are equivalent:
|
|
\begin{itemize}
|
|
\item $A$ is analytic.
|
|
\item There is a pruned tree on $\N \times \N$
|
|
such that
|
|
\[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\]
|
|
\end{itemize}
|
|
\end{proposition}
|
|
\begin{proof}
|
|
$A$ is analytic iff
|
|
there exists $F \overset{\text{closed}}{\subseteq} \N \times \N$
|
|
such that $A = \proj_1(F)$.
|
|
But closed sets of $\N \times \N$ correspond to pruned trees,
|
|
by the first point.
|
|
\end{proof}
|
|
\end{enumerate}
|
|
\begin{refproof}{thm:lec12:1}
|
|
Take a tree $T$ on $\N \times \N$
|
|
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
|
|
Consider
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
f\colon \cN &\longrightarrow & \Tr \\
|
|
x &\longmapsto & T(x).
|
|
\end{IEEEeqnarray*}
|
|
Clearly $x \in A \iff f(x)$ is ill-founded.
|
|
$f$ is continuous:
|
|
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
|
|
Then for all $m \le n, s,t \in \N^{<\N}$
|
|
such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$,
|
|
we have
|
|
\begin{itemize}
|
|
\item $t \in T(x) \iff (s,t) \in T$,
|
|
\item $t \in T(y) \iff (s,t) \in T$.
|
|
\end{itemize}
|
|
|
|
So if $x\defon{n} = y\defon{n}$,
|
|
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$..
|
|
\end{refproof}
|
|
|
|
\begin{corollary}
|
|
\label{cor:ifs11c}
|
|
$\IF$ is $\Sigma^1_1$-complete.
|
|
\end{corollary}
|
|
\begin{proof}
|
|
Let $X$ be Polish.
|
|
Suppose that $A \subseteq X$ is analytic and uncountable.
|
|
Then
|
|
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
|
|
\[\begin{tikzcd}
|
|
X & \cN & \Tr \\
|
|
A & {b(A)}
|
|
\arrow["f", from=1-2, to=1-3]
|
|
\arrow["b", from=1-1, to=1-2]
|
|
\arrow[hook, from=2-1, to=1-1]
|
|
\arrow[hook, from=2-2, to=1-2]
|
|
\end{tikzcd}\]
|
|
where $f$ is chosen as in \yaref{thm:lec12:1}.
|
|
|
|
If $X$ is Polish and countable and $A \subseteq X$ analytic,
|
|
just consider
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
g \colon X &\longrightarrow & \Tr \\
|
|
x &\longmapsto & \begin{cases}
|
|
a &: x \in A,\\
|
|
b &: x \not\in A,\\
|
|
\end{cases}
|
|
\end{IEEEeqnarray*}
|
|
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
|
|
\end{proof}
|
|
|
|
\subsection{Linear Orders}
|
|
|
|
Let us consider the space
|
|
\[\LO \coloneqq \{x \in 2^{\N\times \N} : x \text{ is a linear order on $\N$}\},\]
|
|
where we code a linear order $(\N, <)$
|
|
by $x \in 2^{\N \times \N}$ with $x(m,n) = 1 \iff m \le n$.
|
|
|
|
Let
|
|
\[
|
|
\WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}.
|
|
\]
|
|
|
|
Recall that
|
|
\begin{itemize}
|
|
\item $(A,<)$ is a well ordering iff there are no infinite descending chains.
|
|
\item Every well ordering is isomorphic to an ordinal.
|
|
\item Any two well orderings are comparable,
|
|
i.e.~they are isomorphic,
|
|
or one is isomorphic to an initial segment of the other.
|
|
|
|
Let $(A, <_A) \prec (B, <_B)$ denote that
|
|
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
|
|
\end{itemize}
|
|
|
|
\begin{definition}
|
|
A \vocab{rank} on some set $C$
|
|
is a function
|
|
\[
|
|
\phi\colon C \to \Ord.
|
|
\]
|
|
\end{definition}
|
|
\begin{example}
|
|
Let $C = \WO$
|
|
and
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\phi\colon \WO &\longrightarrow & \Ord \\
|
|
\end{IEEEeqnarray*}
|
|
where $\phi((A,<_A))$ is the unique ordinal
|
|
isomorphic to $(A, <_A)$.
|
|
\end{example}
|
|
|