190 lines
7 KiB
TeX
190 lines
7 KiB
TeX
\lecture{11}{2023-11-21}{}
|
|
|
|
\begin{refproof}{thm:lusinsouslin}
|
|
Note that $B_{(n_0,\ldots, n_k)} \subseteq B_{(n_0,\ldots, n_k)}^\ast \subseteq \overline{B_{n_0,\ldots, n_k}}$.
|
|
|
|
We want to show that
|
|
\[
|
|
f(A) = \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s^\ast.
|
|
\]
|
|
Let $x \in f(A)$.
|
|
Then take $a \in A$ such that $x = f(a)$.
|
|
Then
|
|
\[x \in \bigcap_k \underbrace{B_{a\defon{k}}}_{= f(A \cap N_{a\defon{k}})} \subseteq \bigcap_{k} B^\ast_{a\defon{k}}.\]
|
|
This gives $f(A) \subseteq \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s^\ast$.
|
|
|
|
If $x \in \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s^\ast$,
|
|
Then there is a unique $a$ such that
|
|
$x \in \bigcap_k B^\ast_{a\defon{k}}$.
|
|
|
|
\begin{claim}
|
|
$a \in A$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
We have $B^\ast_{a\defon{k}} \subseteq \overline{B_{a\defon{k}}}$.
|
|
So $x \in \bigcap_k \overline{B_{a\defon{k}}}$.
|
|
In particular, $B_{a\defon{k}} \neq \emptyset$
|
|
for all $k$.
|
|
So for all $k$ we get that $A \cap N_{a\defon{k}} \neq \emptyset$.
|
|
But $A$ is closed and $N_{a\defon{k}}$
|
|
is clopen for all $k$.
|
|
We have $\{a\} = \bigcup_k N_{a\defon{k}}$,
|
|
so $a \in A$.
|
|
\end{subproof}
|
|
|
|
\begin{claim}
|
|
$f(a) = x$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
We have $f(a) \in \bigcap_k B_{a\defon{k}}$.
|
|
Suppose $f(a) \neq x$.
|
|
Pick $U \ni f(a)$ open
|
|
such that $x \not\in \overline{U}$.
|
|
By continuity of $f$,
|
|
we get that $f(N_{a\defon{k_0}}) \subseteq U$
|
|
for $k_0$ large enough.
|
|
So $x \not\in \overline{f(N_{a\defon{k_0}})}$.
|
|
In particular
|
|
$x \not\in \overline{f(N_{a\defon{k_0}})} = \overline{B_{a\defon{k_0}}} \supset B^\ast_{a\defon{k_0}}$.
|
|
But $x \in \bigcap_k B^\ast_{a\defon{k}} \lightning$.
|
|
\end{subproof}
|
|
\end{refproof}
|
|
|
|
\begin{corollary}[of the \yaref{thm:lusinseparation}]
|
|
\yalabel{Corollary of the Lusin Separation Theorem}{Lusin Separation}{cor:lusinseparation}
|
|
Let $X$ be Polish.
|
|
Let $A_1, A_2, A_3,\ldots \subseteq X$ be analytic
|
|
and pairwise disjoint.
|
|
Then there are pairwise disjoint Borel sets $B_i \supseteq A_i$.
|
|
\end{corollary}
|
|
\begin{proof}
|
|
For all $i$, let $B_i, C_i$
|
|
be disjoint Borel sets,
|
|
such that $A_i \subseteq B_i$
|
|
and $\bigcup_{j \neq i} A_j \subseteq C_i$.
|
|
Take $D_i \coloneqq B_i \cap \bigcap_{j \neq i} C_j$.
|
|
\end{proof}
|
|
|
|
\begin{theorem}[\vocab{Borel Schröder-Bernstein}]
|
|
\yalabel{Schröder-Bernstein for Borel sets}{Schröder-Bernstein}{thm:bsb}
|
|
Let $A, B$ be Borel in some Polish spaces.
|
|
Suppose that there are Borel embeddings
|
|
$f\colon A \hookrightarrow B$
|
|
and $g\colon B \hookrightarrow A$.
|
|
Then $A$ and $B$ are Borel isomorphic.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Cf.~\yaref{s7e4}.
|
|
\end{proof}
|
|
|
|
\begin{theorem}[\vocab{Isomorphism Theorem}]
|
|
\yalabel{Isomorphism Theorem}{Isomorphism Thm.}{thm:isomorphism}
|
|
Let $X, Y$ be Borel in some Polish spaces.
|
|
Then $X$ is Borel isomorphic
|
|
to $Y$ iff $|X| = |Y|$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
$\implies$ is clear.
|
|
Suppose that $|X| = |Y| \le \aleph_0$,
|
|
then any bijection suffices,
|
|
since all subsets are Borel.
|
|
If $|X| = |Y| > \aleph_0$,
|
|
then they must have cardinality $\fc$,
|
|
since we can embed the Cantor space.
|
|
|
|
It suffices to show that if $X$ is an uncountable
|
|
Polish space and $\cC = 2^\omega$ the Cantor space,
|
|
then they are Borel isomorphic.
|
|
There is $2^\omega \hookrightarrow X$ Borel
|
|
(continuous wrt.~to the topology of $X$)
|
|
On the other hand
|
|
\[
|
|
X \hookrightarrow\cN \overset{\text{continuous embedding}}{\hookrightarrow}\cC
|
|
\]
|
|
\todo{second inclusion was on a homework sheet}
|
|
For the first inclusion,
|
|
recall that there is a continuous bijection $b\colon D \to X$,
|
|
where $D \overset{\text{closed}}{\subseteq} \cN$.
|
|
Consider $b^{-1}$.
|
|
Whenever $B \subseteq X$ is Borel,
|
|
we have that $b^{-1}(B)$ is Borel,
|
|
since $b$ is continuous.
|
|
For $A \subseteq \cN$ is Borel,
|
|
we have that $b$ with respect to $b(A)$
|
|
is Borel,
|
|
since $b\defon{A}$ is injective,
|
|
by \yaref{thm:lusinsouslin}.
|
|
|
|
Hence \yaref{thm:bsb} can be applied.
|
|
\end{proof}
|
|
|
|
\subsection{The Projective Hierarchy}
|
|
|
|
|
|
% https://q.uiver.app/#q=WzAsNixbMCwxLCJcXERlbHRhXjFfMShYKSJdLFsxLDAsIlxcU2lnbWFeMV8xKFgpIl0sWzEsMiwiXFxQaV4xXzEoWCkiXSxbMiwxLCJcXERlbHRhXjFfMihYKSJdLFszLDAsIlxcU2lnbWFeMV8yKFgpIl0sWzMsMiwiXFxQaV4xXzIoWCkiXSxbMCwxLCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMCwyLCJcXHN1YnNldGVxIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMiwzLCJcXHN1YnNldGVxIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSwzLCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw0LCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw1LCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=
|
|
\[\begin{tikzcd}
|
|
& {\Sigma^1_1(X)} && {\Sigma^1_2(X)} \\
|
|
{\Delta^1_1(X)} && {\Delta^1_2(X)} \\
|
|
& {\Pi^1_1(X)} && {\Pi^1_2(X)}
|
|
\arrow["\subseteq", hook, from=2-1, to=1-2]
|
|
\arrow["\subseteq"', hook, from=2-1, to=3-2]
|
|
\arrow["\subseteq"', hook, from=3-2, to=2-3]
|
|
\arrow["\subseteq", hook, from=1-2, to=2-3]
|
|
\arrow["\subseteq", hook, from=2-3, to=1-4]
|
|
\arrow["\subseteq", hook, from=2-3, to=3-4]
|
|
\end{tikzcd}\]
|
|
|
|
\begin{definition}
|
|
Let $X$ be a Polish space.
|
|
We define
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\Delta^1_n(X) &\coloneqq& \Sigma^1_n(X) \cap \Pi^1_n(X)\\
|
|
\Pi^1_n(X) &=& \{A \subseteq X : X \setminus A \in \Sigma^1_n(X)\}\\
|
|
\Sigma^1_{n+1}(X) &=& \{ A \subseteq X : \exists B \in \Pi^1_n(X \times \cN) .~A = \proj_X[B]\}
|
|
\end{IEEEeqnarray*}
|
|
\end{definition}
|
|
|
|
\begin{theorem}
|
|
Every analytic and every coanalytic set
|
|
has the Baire property.
|
|
\end{theorem}
|
|
We will not proof this in this lecture.
|
|
|
|
|
|
\subsection{Ill-Founded Trees}
|
|
|
|
|
|
Recall that a \vocab{tree} on $\N$ is a subset of
|
|
$\N^{<\N}$
|
|
closed under taking initial segments.
|
|
|
|
We now identify trees with their characteristic functions,
|
|
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
|
|
x &\longmapsto & \begin{cases}
|
|
1 &: x \in T,\\
|
|
0 &: x \not\in T.
|
|
\end{cases}
|
|
\end{IEEEeqnarray*}
|
|
Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.
|
|
|
|
Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
|
|
|
\begin{observe}
|
|
\[
|
|
\Tr \subseteq {2^{\N}}^{<\N}
|
|
\]
|
|
is closed (where we take the topology of the Cantor space).
|
|
\end{observe}
|
|
Indeed, for any $ s \in \N^{<\N}$
|
|
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
|
|
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
|
|
Boolean combinations of such sets are clopen as well.
|
|
In particular for $s$ fixed,
|
|
we have that
|
|
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
|
|
is clopen in ${2^{\N}}^{<\N}$.
|
|
|
|
|
|
|