281 lines
8.5 KiB
TeX
281 lines
8.5 KiB
TeX
\lecture{05}{2023-10-31}{}
|
|
|
|
\begin{fact}
|
|
\begin{itemize}
|
|
\item A set $A$ is nwd iff $\overline{A}$ is nwd.
|
|
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
|
|
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
|
|
\end{itemize}
|
|
|
|
|
|
\end{fact}
|
|
\begin{proof} % remove?
|
|
\begin{itemize}
|
|
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
|
|
\item Trivial.
|
|
\item Let $B = \bigcup_{n < \omega} B_n$ be a union of nwd sets.
|
|
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
|
|
\end{itemize}
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
A \vocab{$\sigma$-algebra} on a set $X$
|
|
is a collection of subsets of $X$
|
|
such that:
|
|
\begin{itemize}
|
|
\item $\emptyset, X \in \cA$,
|
|
\item $ A \in \cA \implies X \setminus A \in \cA$,
|
|
\item $(A_i)_{i < \omega}, A_i \in \cA \implies \bigcup_{i < \omega} A_i \in \cA$.
|
|
\end{itemize}
|
|
\end{definition}
|
|
\begin{fact}
|
|
Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$
|
|
we have that $\sigma$-algebras are closed under countable intersections.
|
|
\end{fact}
|
|
|
|
\begin{theorem}
|
|
\label{thm:bairesigma}
|
|
Let $X$ be a topological space.
|
|
Then the collection of sets with the Baire property
|
|
is a $\sigma$-algebra on $X$.
|
|
|
|
It is the smallest $\sigma$-algebra
|
|
containing all meager and open sets.
|
|
\end{theorem}
|
|
\begin{refproof}{thm:bairesigma}
|
|
Let $\cA$ be the collection of sets with the Baire property.
|
|
Since open sets have the Baire property,
|
|
we have $\emptyset, X \in \cA$.
|
|
|
|
|
|
Let $A_n \in \cA$ for all $n < \omega$.
|
|
Take $U_n$ such that $A_n \symdif U_n$ is meager.
|
|
Then
|
|
\[
|
|
\left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right)
|
|
\]
|
|
is meager,
|
|
hence $\bigcup_{n < \omega} A_n \in \cA$.
|
|
|
|
Let $A \in \cA$.
|
|
Take some open $U$ such that $U \symdif A$ is meager.
|
|
We have $(X \setminus U) \symdif (X \setminus A) = U \symdif A$.
|
|
|
|
\begin{claim}
|
|
\label{thm:bairesigma:c1}
|
|
If $F$ is closed,
|
|
then $F \setminus \inter(F)$
|
|
is nwd.
|
|
In particular, $F \symdif \inter(F)$ is nwd.
|
|
\end{claim}
|
|
\begin{refproof}{thm:bairesigma:c1}
|
|
$F \setminus \inter(F)$ is closed,
|
|
hence $\overline{F \setminus \inter(F)} = F \setminus \inter(F)$.
|
|
Clearly $\inter(F\setminus\inter(F)) = \emptyset$.
|
|
\end{refproof}
|
|
|
|
From the claim we get that
|
|
$X \setminus A =^\ast X \setminus U =^\ast \inter(X \setminus U)$.
|
|
Hence $X \setminus A \in \cA$.
|
|
|
|
|
|
It is clear that all meager sets have the Baire property.
|
|
|
|
Let $A \in \cA$. Then $A = (A \setminus U) \cup (A \cap U)$
|
|
for some open $U$
|
|
such that $A \setminus U$ is meager.
|
|
We have $A \cap U = U \setminus (U \setminus A)$.
|
|
Thus we get that $\cA$ is the minimal $\sigma$-algebra
|
|
containing all meager and all open sets.
|
|
\end{refproof}
|
|
|
|
%\begin{example}
|
|
% Nwd set of positive measure.
|
|
% TODO
|
|
% remove open intervals such that their length does not add to 0
|
|
%
|
|
%\end{example}
|
|
|
|
\begin{theorem}[Baire Category theorem]
|
|
Let $X$ be a completely metrizable space.
|
|
Then every comeager set of $X$ is dense in $X$.
|
|
\end{theorem}
|
|
\todo{Proof (copy from some other lecture)}
|
|
\begin{theoremdef}
|
|
Let $X$ be a topological space.
|
|
The following are equivalent:
|
|
\begin{enumerate}[(i)]
|
|
\item Every nonempty open set
|
|
is non-meager in $X$.
|
|
\item Every comeager set is dense.
|
|
\item The intersection of countable many
|
|
open dense sets is dense.
|
|
\end{enumerate}
|
|
In this case $X$ is called a \vocab{Baire space}.
|
|
\footnote{see \yaref{s5e1}}
|
|
\end{theoremdef}
|
|
\begin{proof}
|
|
\todo{Proof (short)}
|
|
|
|
(iii) $\implies$ (i)
|
|
Let us first show that $X$ is non-meager.
|
|
Suppose that $X$ is meager. Then $X = \bigcup_{n} A_n = \bigcup_{n} \overline{A_n}$
|
|
is the countable union of nwd sets.
|
|
We have that
|
|
\[
|
|
\emptyset = \bigcap_{n} (X \setminus \overline{A_n})
|
|
\]
|
|
is dense by (iii).
|
|
This proof can be adapted to other open sets $X$.
|
|
\end{proof}
|
|
|
|
|
|
\begin{notation}
|
|
Let $X ,Y$ be topological spaces,
|
|
$A \subseteq X \times Y$
|
|
and
|
|
$x \in X, y \in Y$.
|
|
|
|
Let
|
|
\[
|
|
A_x \coloneqq \{y \in Y : (x,y) \in A\}
|
|
\]
|
|
and
|
|
\[
|
|
A^y \coloneqq \{x \in X : (x,y) \in A\} .
|
|
\]
|
|
\end{notation}
|
|
|
|
The following similar to Fubini,
|
|
but for meager sets:
|
|
|
|
\begin{theorem}[Kuratowski-Ulam]
|
|
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
|
Let $X,Y$ be second countable topological spaces.
|
|
Let $A \subseteq X \times Y$
|
|
be a set with the Baire property.%
|
|
\footnote{It is important that $A$ has the Baire property (cf. \yaref{s5e4}).}
|
|
|
|
Then
|
|
\begin{enumerate}[(i)]
|
|
\item $\{x \in X : A_x \text{ has the BP }\}$
|
|
is comeager\footnote{Note that not necessarily all sections
|
|
have the BP. For example $\{x\} \times Y$ is meager in $X \times Y$}
|
|
and similarly for $y$.
|
|
\item $A$ is meager
|
|
\begin{IEEEeqnarray*}{rll}
|
|
\iff &\{x \in X : A_x \text{ is meager}\}&\text{ is comeager}\\
|
|
\iff &\{y \in Y : A^y \text{ is meager}\}& \text{ is comeager}.
|
|
\end{IEEEeqnarray*}
|
|
\item $A$ is comeager
|
|
\begin{IEEEeqnarray*}{rll}
|
|
\iff & \{x \in X: A_x \text{ is comeager}\} &\text{ is comeager}\\
|
|
\iff & \{y \in Y: A^y \text{ is comeager}\} & \text{ is comeager}.
|
|
\end{IEEEeqnarray*}
|
|
\end{enumerate}
|
|
\end{theorem}
|
|
\begin{refproof}{thm:kuratowskiulam}
|
|
(ii) and (iii) are equivalent by passing to the complement.
|
|
|
|
\begin{claim}%[1a]
|
|
\label{thm:kuratowskiulam:c1a}
|
|
|
|
If $F \overset{\text{closed}}{\subseteq} X \times Y$
|
|
is nwd,
|
|
then
|
|
\[
|
|
\{x \in X : F_x \text{is nwd}\}
|
|
\]
|
|
is comeager.
|
|
\end{claim}
|
|
\begin{refproof}{thm:kuratowskiulam:c1a}
|
|
Put $W = F^c$.
|
|
This is open and dense in $X \times Y$.
|
|
It suffices to show that $\{x \in X : W_x \text{ is dense}\}$
|
|
is comeager.
|
|
Note that $W_x$ is open for all $x$.
|
|
|
|
Fix a countable basis $(V_n)$ of $Y$
|
|
with $V_n$ non-empty.
|
|
We want to show that
|
|
\[
|
|
\{x \in X: \forall n.~ (W_x \cap V_n) \neq \emptyset\}
|
|
\]
|
|
is a comeager set.
|
|
This is equivalent to
|
|
\[
|
|
\{x \in X : (W_x \cap V_n) \neq \emptyset\}
|
|
\]
|
|
being comeager for all $n$,
|
|
because the intersection
|
|
of countably many comeager sets is comeager.
|
|
|
|
Fix $n$ and let $U_n \coloneqq \{x \in X: (W_x \cap V_n) = \emptyset\}$.
|
|
We will show that $U_n$ is open and dense,
|
|
hence it is comeager.
|
|
|
|
$U_n = \proj_x(W \cap (X \times V_n))$ is open
|
|
since projections of open sets are open.
|
|
|
|
Let $U \subseteq X$ be nonempty and open.
|
|
We need to show that $U \cap U_n \neq \emptyset$.
|
|
It is
|
|
\[
|
|
U \cap U_n = \proj_x(W \cap (U \times V_n))
|
|
\]
|
|
nonempty since $W$ is dense.
|
|
\end{refproof}
|
|
|
|
\begin{claim} % [1a']
|
|
\label{thm:kuratowskiulam:c1ap}
|
|
If $F \subseteq X \times Y$
|
|
is nwd,
|
|
then
|
|
\[
|
|
\{x \in X : F_x \text{is nwd}\}
|
|
\]
|
|
is comeager.
|
|
|
|
\end{claim}
|
|
\begin{refproof}{thm:kuratowskiulam:c1ap}
|
|
We have that $\overline{F}$ is nwd.
|
|
Hence by \yaref{thm:kuratowskiulam:c1a}
|
|
the set
|
|
\[
|
|
\{x \in X: \overline{F_x} \text{ is nwd}\} \subseteq
|
|
\{x \in X: F_x \text{ is nwd}\}
|
|
\]
|
|
is comeager.
|
|
\end{refproof}
|
|
|
|
\begin{claim}% [1b]
|
|
\label{thm:kuratowskiulam:c1b}
|
|
|
|
If $M \subseteq X \times Y$ is meager,
|
|
then
|
|
\[
|
|
\{x \in X : M_x \text{ is meager}\}
|
|
\]
|
|
is comeager.
|
|
\end{claim}
|
|
\begin{refproof}{thm:kuratowskiulam:c1b}
|
|
This follows from \yaref{thm:kuratowskiulam:c1ap}:
|
|
Let $M = \bigcup_{n < \omega} F_n$
|
|
where the $F_n$ are nwd.
|
|
Apply \yaref{thm:kuratowskiulam:c1ap}
|
|
to each $F_n$.
|
|
We get that
|
|
$M_x$ is comeager
|
|
as a countable intersection of comeager sets.
|
|
\end{refproof}
|
|
|
|
% \phantom\qedhere
|
|
% \end{refproof}
|
|
% TODO fix claim numbers
|
|
|
|
\begin{remark}
|
|
Suppose that $A$ has the BP.
|
|
Then there is an open $U$ such that
|
|
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
|
Then $A = U \symdif M$.
|
|
\end{remark}
|