261 lines
7.5 KiB
TeX
261 lines
7.5 KiB
TeX
\lecture{03}{2023-10-17}{Embedding of the cantor space into polish spaces}
|
|
|
|
\subsection{Trees}
|
|
|
|
|
|
\begin{notation}
|
|
Let $A \neq \emptyset$, $n \in \N$.
|
|
Then
|
|
\[
|
|
A^n \coloneqq \{s\colon \{0,1,\ldots, n-1\} \to A \}
|
|
\]
|
|
is the set of $n$-element \vocab[Sequence]{sequences}.
|
|
We often write
|
|
$(s_0,s_1,\ldots,s_{n-1})$.
|
|
|
|
If $s = (s_0,\ldots,s_{n-1})$,
|
|
then $n$ is the \vocab{length} of $s$,
|
|
denoted by $|s|$.
|
|
|
|
If $n = 0$ there exists only the empty sequence,
|
|
i.e.~$A^0 = \{\emptyset\}$ and $|\emptyset| = 0$.
|
|
|
|
We set
|
|
\[
|
|
A^{<\N} \coloneqq \bigcup_{n=0}^{\infty} A^n
|
|
\]
|
|
and
|
|
\[
|
|
A^{\N} \coloneqq \{x \colon \N \to A\}.
|
|
\]
|
|
|
|
If $s \in A^n$ and $m \le n$,
|
|
we let
|
|
$s\defon{m} \coloneqq (s_0,\ldots,s_{m-1})$.
|
|
|
|
Let $s,t \in A^{<\N}$.
|
|
We say that $s$ is an \vocab{initial segment}
|
|
of $t$ (or $t$ is an \vocab{extension} of $s$)
|
|
if there exists an $n$ such that $s = t\defon{|s|}$.
|
|
We write this as $s \subseteq t$.
|
|
|
|
We say that $s$ and $t$ are \vocab{compatible}
|
|
if $s \subseteq t$ or $t \subseteq s$.
|
|
Otherwise the are \vocab{incompatible},
|
|
we denote that as $s \perp t$.
|
|
|
|
The \vocab{concatenation}
|
|
of $s = (s_0,\ldots, s_{n-1})$
|
|
and $t = (t_0,\ldots, t_{m-1})$
|
|
is the sequence
|
|
$s\concat t \coloneqq (s_0,\ldots,s_{n-1}, t_0,\ldots, t_{n-1})$
|
|
|
|
In the case of $t = (a)$
|
|
we also write $s\concat a$ for $s\concat (a)$.
|
|
|
|
Similarly, if $x \in A^{\N}$
|
|
we can write $x = (x_0,x_1,\ldots)$.
|
|
If $n \in \N$, $x\defon{n} \coloneqq (x_0,\ldots,x_{n-1})$,
|
|
define extension, initial segments
|
|
and concatenation of a finite sequence with an infinite one.
|
|
\end{notation}
|
|
|
|
\begin{definition}
|
|
A \vocab{tree}
|
|
on a set $A$ is a subset $T \subseteq A^{<\N}$
|
|
closed under initial segments,
|
|
i.e.~if $t \in T, s \subseteq t \implies s \in T$.
|
|
Elements of trees are called \vocab{nodes}.
|
|
|
|
A \vocab{leave} is an element of $T$,
|
|
that has no extension in $t$.
|
|
|
|
An \vocab{infinite branch} of a tree $T$
|
|
is $x \in A^{\N}$
|
|
such that $\forall n.~x\defon{n} \in T$.
|
|
|
|
The \vocab{body} of $T$ is the set of all
|
|
infinite branches:
|
|
\[
|
|
[T] \coloneqq\{x \in A^{\N}: \forall n. x\defon{n} \in T\}.
|
|
\]
|
|
|
|
We say that $T$ is \vocab{pruned},
|
|
iff
|
|
\[
|
|
\forall t\in T.\exists s \supsetneq t.~s \in T.
|
|
\]
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
A \vocab{Cantor scheme}
|
|
on a set $X$ is a family
|
|
$(A_s)_{s \in 2^{< \N}}$
|
|
of subsets of $X$ such that
|
|
\begin{enumerate}[i)]
|
|
\item $\forall s \in 2^{<\N}.~A_{s \concat 0} \cap A_{s \concat 1} = \emptyset$.
|
|
\item $\forall s \in 2^{<\N}, i \in 2.~A_{s \concat i} \subseteq A_s$.
|
|
\end{enumerate}
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
A topological space
|
|
is \vocab{perfect}
|
|
if it has no isolated points,
|
|
i.e.~for any $U \neq \emptyset$ open,
|
|
there $x \neq y$ such that $x, y \in U$.
|
|
\end{definition}
|
|
|
|
\begin{theorem}
|
|
\label{thm:cantortopolish}
|
|
Let $X \neq \emptyset$
|
|
be a perfect Polish space.
|
|
Then there is an embedding
|
|
of the Cantor space $2^{\N}$
|
|
into $X$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
We will define a Cantor scheme
|
|
$(U_s)_{s \in 2^{<\N}}$
|
|
such that $\forall s \in 2^{< \N}$.
|
|
\begin{enumerate}[(i)]
|
|
\item $U_s \neq \emptyset$ and open,
|
|
\item $\diam(U_s) \le 2^{-|s|}$,
|
|
\item $\overline{U_{s \concat i}} \subseteq U_s$
|
|
for $i \in 2$.
|
|
\end{enumerate}
|
|
|
|
We define $U_s$ inductively on the length of $s$.
|
|
|
|
For $U_{\emptyset}$ take any non-empty open set
|
|
with small enough diameter.
|
|
|
|
Given $U_s$, pick $x \neq y \in U_s$
|
|
and let $U_{s \concat 0} \ni x$,
|
|
$U_{s \concat 1} \ni y$
|
|
be disjoint, open,
|
|
of diameter $\le \frac{1}{2^{|s| +1}}$
|
|
and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$.
|
|
|
|
Let $x \in 2^{\N}$.
|
|
Then let $f(x)$ be the unique point in $X$
|
|
such that
|
|
\[
|
|
\{f(x)\} = \bigcap_{n} U_{x \defon n} = \bigcap_{n} \overline{U_{x \defon n}}.
|
|
\]
|
|
(This is nonempty as $X$ is a completely metrizable space.)
|
|
It is clear that $f$ is injective and continuous.
|
|
% TODO: more details
|
|
$2^{\N}$ is compact, hence $f^{-1}$ is also continuous.
|
|
\end{proof}
|
|
|
|
\begin{corollary}
|
|
\label{cor:perfectpolishcard}
|
|
Every nonempty perfect Polish
|
|
space $X$ has cardinality $\fc = 2^{\aleph_0}$
|
|
% TODO: eulerscript C ?
|
|
\end{corollary}
|
|
\begin{proof}
|
|
Since the cantor space embeds into $X$,
|
|
we get the lower bound.
|
|
Since $X$ is second countable and Hausdorff,
|
|
we get the upper bound.
|
|
\end{proof}
|
|
|
|
\begin{theorem}
|
|
Any Polish space is countable
|
|
or it has cardinality $\fc$. % TODO C
|
|
\end{theorem}
|
|
\begin{proof}
|
|
See \autoref{cor:polishcard}.
|
|
\end{proof}
|
|
|
|
|
|
\begin{definition}
|
|
A \vocab{Lusin scheme} on a set $X$
|
|
is a family $(A_s)_{s \in \N^{<\N}}$
|
|
of subsets of $X $
|
|
such that
|
|
\begin{enumerate}[(i)]
|
|
\item $A_{s \concat i} \cap A_{s \concat j} = \emptyset$
|
|
for all $j \neq i \in \N$, $s \in \N^{<\N}$.
|
|
\item $A_{s \concat i} \subseteq A_s$
|
|
for all $i \in \N, s \in \N^{<\N}$.
|
|
\end{enumerate}
|
|
\end{definition}
|
|
|
|
\begin{theorem}
|
|
\label{thm:bairetopolish}
|
|
Let $X \neq \emptyset$ be a Polish space.
|
|
Then there is a closed subset
|
|
\[
|
|
D \subseteq \N^\N \text{\reflectbox{$\coloneqq$}} \cN
|
|
% TODO correct N for the Baire space?
|
|
\]
|
|
and a continuous bijection from
|
|
$D$ onto $X$ (the inverse does not need to be continuous).
|
|
|
|
Moreover there is a continuous surjection $g: \cN \to X$
|
|
extending $f$.
|
|
\end{theorem}
|
|
\begin{definition}
|
|
An $F_\sigma$ set is the
|
|
countable union of closed sets,
|
|
i.e.~the complement of a $G_\delta$ set.
|
|
\end{definition}
|
|
\begin{observe}
|
|
\begin{itemize}
|
|
\item Any open set is $F {\sigma}$.
|
|
\item In metric spaces the intersection of an open and closed set is $F_\sigma$.
|
|
\end{itemize}
|
|
\end{observe}
|
|
\begin{refproof}{thm:bairetopolish}
|
|
Let $d$ be a complete metric on $X$.
|
|
W.l.o.g.~$\diam(X) \le 1$.
|
|
We construct a Lusin scheme
|
|
$(F_s)_{s \in \N^{<\N}}$
|
|
such that $F_s \subseteq X$
|
|
and
|
|
\begin{enumerate}[(i)]
|
|
\item $F_\emptyset = X$,
|
|
\item $F_s$ is $F_\sigma$ for all $s$.
|
|
\item The $F_{s \concat i}$ partition $F_s$,
|
|
i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$. % TODO change notation?
|
|
|
|
Furthermore we want that
|
|
$\overline{F_{s \concat i}} \subseteq F_s$
|
|
for all $i$.
|
|
\item $\diam(F_s) \le 2^{-|s|}$.
|
|
\end{enumerate}
|
|
|
|
Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$.
|
|
We need to construct a partition $(F_i)_{i \in \N}$
|
|
of $F$ with $\overline{F_i} \subseteq F$
|
|
and $\diam(F_i) < \epsilon$
|
|
for $\epsilon = 2^{-|s| - 1}$,
|
|
such that the $F_i$ are $F_\sigma$.
|
|
|
|
\paragraph{Step 1}
|
|
Write $F \coloneqq \bigcup_{i \in \N} C_i$
|
|
for some closed sets $C_i$.
|
|
W.l.o.g.~$C_i \subseteq C_{i+1}$.
|
|
|
|
Let $F_i^0 \coloneqq C_{i+1} \setminus C_i$.
|
|
These $F_i^0$ are $F_\sigma$,
|
|
and form a partition of $F$.
|
|
Furthermore $\overline{F_i^0} \subseteq F$.
|
|
|
|
However the diameter might be too large.
|
|
Fix $i \in \N$ and consider $F_i^0$.
|
|
Cover it with countably many open balls $B_1, B_2,\ldots$
|
|
of diameter smaller than $\epsilon$.
|
|
The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$
|
|
are $F_\sigma$, disjoint
|
|
and $F_i^0 = \bigcup_{j} D_j$.
|
|
|
|
|
|
|
|
\phantom\qedhere
|
|
\end{refproof}
|
|
|
|
|