\lecture{25}{2024-01-26}{} Let $\beta\N$ denote the set of ultrafilters on $\N$. \begin{fact} \begin{itemize} \item This is a topological space, where a basis consist of sets $V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$. (For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$ and $\beta\N = V_\N$.) \item Note also that for $A, B \subseteq \N$, $V_{A \cup B} = V_A \cup V_B$, $V_{A^c} = \beta\N \setminus V_A$. \end{itemize} \end{fact} \begin{observe} \label{ob:bNclopenbasis} Note that the basis is clopen. In particular any closed set can be written as an intersection of sets of the form $V_A$: If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$, so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$. \end{observe} \begin{fact} \label{fact:bNhd} $\beta\N$ is Hausdorff. \end{fact} \begin{proof} Let $\cU \neq \cV \in \beta\N$. Then there is some $A \in \cU \setminus \cV$, so $A^c \in \cV$, so $\cU \in V_A$ and $\cV \in V_A^c$. \end{proof} %\begin{remark}+ % This even shows that $\beta\N$ is totally separated. % In fact, $\beta\N$ is a profinite space, % as the next fact shows. %\end{remark} \begin{fact} \label{fact:bNcompact} $\beta\N$ is compact. \end{fact} \begin{proof} Let $\{F_i\}_{i \in I}$ be non-empty and closed such that for any $i_1,\ldots., i_k \in I$, $k \in \N$, $\bigcap_{j=1}^k F_{i_j} \neq \emptyset$. We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$. Replacing each $F_i$ by $V_{A_j^i}$ such that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$ (cf.~\yaref{ob:bNclopenbasis}) we may assume that $F_i$ is of the form $V_{A_i}$. We get $\{F_i = V_{A_i} : i \in I\}$ with the finite intersection property. Hence $\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$ has the finite intersection property. Then $\cF = \{A \subseteq \N : A \supseteq A_{i_1} \cap \ldots \cap A_{i_k}, k \in \N, i_1, \ldots, i_k \in I\}$ is a filter. Let $\cU$ be an ultrafilter extending $\cF$. Then $\cU \in \bigcap_{i \in I} V_{A_i} = \bigcap_{i \in I} F_i$. \end{proof} \begin{fact} Consider $\N$ as a subspace of $\beta\N$ via $\N \hookrightarrow \beta\N, n \mapsto \hat{n} \coloneqq \{A \subseteq \N : n \in A\}$. Then \begin{itemize} \item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$. \item $\N \subseteq \beta\N$ is dense. \end{itemize} \todo{Easy exercise} % TODO write down (exercise) \end{fact} \begin{theorem} For every compact Hausdorff space $X$, a sequence $(x_n)$ in $X$, and $\cU \in \beta\N$, we have that $\ulim{\cU}_n x_n = x$ exists and is unique, i.e.~for all $x \in G \overset{\text{open}}{\subseteq} X$ we have $\{n \in \N : x_n \in G\} \in \cU$. \end{theorem} \begin{proof} Towards a contradiction assume that there is no such $x$. For every $x$ take $x \in G_x \overset{\text{open}}{\subseteq} X$ such that $\{ n \in \N : x_n \in G_x\} \not\in \cU$. So $\{G_x\}_{x \in X}$ is an open cover of $X$. Since $X$ is compact, there exists a finite subcover $G_{x_1}, \ldots, G_{x_m}$. But then \begin{IEEEeqnarray*}{rCl} \N &=& \{ n \in \N : x_n \in \bigcup_{i=1}^m G_{x_i}\}\\ &=& \underbrace{\bigcup_{i=1}^m \overbrace{\{n \in \N : x_n \in G_{x_i}\}}^{\not\in \cU}}_{\not\in \cU}, \end{IEEEeqnarray*} since $B_1 \cup \ldots \cup B_m \in \cU \iff \exists i < m.~B_i \in \cU$. It is clear that $\ulim{\cU}_n x_n$ is unique, since $X$ is Hausdorff. \end{proof} \begin{theorem} Let $X$ be a compact Hausdorff space. For any $f\colon \N \to X$ there is a unique continuous extension $\tilde{f}\colon \beta\N \to X$. \end{theorem} \begin{proof} Let \begin{IEEEeqnarray*}{rCl} \tilde{f}\colon \beta\N &\longrightarrow & X \\ \cU &\longmapsto & \ulim{\cU}_n f(n). \end{IEEEeqnarray*} \todo{Exercise: Check that $\tilde{f}$ is continuous.} $\tilde{f}$ is uniquely determined, since $\N \subseteq \beta\N$ is dense. % TODO general fact: continuous functions agreeing on a dense set % agree everywhere (fact section) \end{proof} \begin{trivial}+ More generally, $\beta$ is a functor from the category of topological spaces to the category of compact Hausdorff spaces. It is left adjoint to the inclusion functor. \end{trivial} % RECAP \gist{% $\beta\N$ is equipped with $+$ which extends $+\colon \N \times \N \to \N$, \[ \cU + \cV = \{A \subseteq \N : (\cU m)\left( (\cU n) \{m+n \in A\} \right)\}. \] This is associative, but not commutative. }{} % END RECAP \begin{fact} $+\colon \beta\N\times \beta\N \to \beta\N$ is left continuous, i.e.~for $\cV$ fixed, $\cU \mapsto \cU + \cV$ is continuous. \end{fact} \begin{proof} Fix $A$ and consider $V_A$. We need to show that the inverse image of $V_A$ is open. We have \begin{IEEEeqnarray*}{rCl} \cU + \cV \in V_A &\iff& A \in \cU + \cV\\ &\iff& (\cU_m)(\cV_n) \{m+n \in A\}\\ &\iff& \{m \in \N : (\cV n) m+n \in A\} \in \cU\\ &\iff& \cU \in V_{\{m \in \N: (\cV n) m+n \in A\}}. \end{IEEEeqnarray*} \end{proof} \begin{corollary} $(\beta\N,+)$ is a %(left) \vocab{compact semigroup}, i.e.~it is compact, Hausdorff, associative and left-continuous.% %\footnote{There is no convention on left and right.} \end{corollary} So we can apply the \yaref{lem:ellisnumakura} to obtain \begin{corollary} There is $\cU \in \beta\N$ such that $\cU + \cU = \cU$. \end{corollary} \begin{observe} Principal ultrafilters $\neq \hat{0}$ are not idempotent. We can restrict to $\beta\N \setminus \N$ to get an idempotent element that is not principal. % TODO THINK ABOUT THIS \end{observe} \begin{theorem}[Hindman] \label{thm:hindman} If $\N$ is partitioned into finitely many sets, then there is is an infinite subset $H \subseteq \N$ such that all finite sums of distinct elements of $H$ belong to the same set of the partition. \end{theorem} \begin{proof}[Galvin,Glazer] Let $\cU \in \beta\N \setminus \N$ be such that $\cU + \cU = \cU$. Let $P$ be the piece of the partition that is in $\cU$. So $(\cU n ) n \in P$. Let us define a sequence $x_1,x_2,\ldots$ \begin{itemize} \item $\cU$ is idempotent, so $(\cU n)(\cU k) n+k \in P$. We get \[(\cU n) \left( n \in P \land (\cU_k) n+k \in P \right)\]. Pick $x_1$ that satisfies this, i.e.~$x_1 \in P$ and $(\cU_k) x_1+k \in P$. \item $\cU$ is idempotent, so \[ (\cU n)[ n \in P \land (\cU_k) n + k \in P \land x_1 + n \in P \land (\cU_k) x_1 + n + k \in P ] \] Take $x_2 > x_1$ that satisfies this. \item Suppose we have chosen $\langle x_i : i < n \rangle$. Since $\cU$ is idempotent, we have \[ (\cU n)[ n \in P \land (\cU_k) n + k \in P \land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P) \land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right). \] Chose $x_n > x_{n-1}$ that satisfies this. \end{itemize} Set $H \coloneqq \{x_i : i < \omega\}$. \end{proof} Next time we'll see another proof of this theorem.