\tutorial{05}{}{} % Sheet 5 - 18.5 / 20 \subsection{Exercise 1} Let $B \subseteq C$ be comeager. Then $B = B_1 \cup B_2$, where $B_1$ is dense $G_\delta$ and $B_2$ is meager. \begin{fact} $X$ is Baire iff every non-empty open set is non-meager. In particular, let $X$ be Baire, then $U \overset{\text{open}}{\subseteq} X$ is Baire. \end{fact} \subsection{Exercise 2}