\tutorial{09}{2023-12-12}{} \begin{fact} Let $X,Y$ be topological spaces $X$ (quasi-)compact and $Y$ Hausdorff. Let $f\colon X\to Y$ be a continuous bijection. Then $f$ is a homeomorphism. \end{fact} \begin{proof} Compact subsets of Hausdorff spaces are closed. \end{proof} \subsection{Sheet 8} Material on topological dynamics: \begin{itemize} \item Terence Tao's notes on ergodic theory 254A: \cite{tao} \item \cite{Furstenberg} (uses very different notation!). \end{itemize} \nr 1 \begin{remark} $\Sigma^1_1$-complete sets are in some sense the ``worst'' $\Sigma^1_1$-sets: Deciding whether an element is contained in the $\Sigma^1_1$-complete set is at least as ``hard'' as as for any $\Sigma^1_1$ set. In particular, $\Sigma^1_1$-complete sets are not Borel. \end{remark} Similarly as in \yaref{prop:ifs11} it can be shown that $L \in \Sigma^1_1(X)$: Consider $\{(x, \beta) \in X \times \cN : \forall n.~x_{\beta_n} | x_{\beta_{n+1}}\}$. This is closed in $X \times \cN$, since it is a countable intersection of clopen sets and $L = \proj_X(D)$. Since $\IF \subseteq \Tr$ is $\Sigma^1_1$-complete, it suffices to find a Borel map $f\colon \Tr \to X$ such that $x \in \IF \iff f(x) \in L$. Let $\phi\colon \omega^2 + \omega \to \omega$ be bijective and let $p_i$ denote the $i$-th prime. Define \begin{IEEEeqnarray*}{rCl} \psi\colon \omega^{<\omega} &\longrightarrow & \omega \setminus \{0\} \\ (s_0, s_1, \ldots, s_{n-1})&\longmapsto & \prod_{i < n} p_{\phi(\omega \cdot i + s_i)}. \end{IEEEeqnarray*} Note that $\psi$ is injective and that $s \in \omega^{<\omega}$ is an initial segment of $t \in \omega^{<\omega}$ iff $\psi(s) | \psi(t)$. Let \begin{IEEEeqnarray*}{rCl} f' \colon \Tr &\longrightarrow & \cP(\omega \setminus \{0\}) \\ T &\longmapsto & \{\phi(s) : s \in T\}. \end{IEEEeqnarray*} We can turn this into a function $f\colon \Tr \to (\omega \setminus \{0\})^{\omega}$ by mapping a subset of $\omega \setminus \{0\}$ to the unique strictly increasing sequence whose elements are from that subset (appending $\phi(\omega^2 + n), n \in \omega$, if the subset was finite). Note that $T \in \IF \iff f(T) \in L$. Furthermore $f$ is Borel, since fixing a finite initial sequence (i.e.~a basic open set of $(\omega \setminus \{0\})^{\omega}$) amounts to a finite number of conditions on the preimage. \nr 2 \todo{handwritten} % Aron % % \begin{enumerate}[1.] % \item This is trivial $\sup \sup$. % \item Clearly there are trees of rank $n$ for all $n < \omega$. % Glue them together. % \[ % \{(0,0,i,\underbrace{0,\ldots,0}_{i \text{~times}}) | i < \omega\}. % \] % \item Map infinite branches. $\sup$ the $\le $. % \item Induction on $\rho(S)$. % Cofinal subsequences bla bla. % \end{enumerate} \nr 3 \begin{itemize} \item $LO(\N) \overset{\text{closed}}{\subseteq} 2^{\N\times \N}$: We have $< \in LO(\N)$ iff \begin{itemize} \item $\forall x,y.~ (x \neq y \implies (x< y \lor x > y))$, \item $\forall x.~(x \not < x)$, \item $\forall x,y,x.~(x < y < z \implies x < z)$. \end{itemize} Write this with $\bigcap$, i.e. \begin{IEEEeqnarray*}{rCl} LO(\N) &=& \bigcap_{n \in \N} \{R: (n,n) \not\in R\}\\ && \cap \bigcap_{m < n \in \N} (\{R: (n,m) \in R\} \cup \{R: (m,n) \in R\})\\ &&\cap \bigcap_{a,b,c \in \N} (\{R: (a,b) \in R \land (b,c) \in R \implies (a,c) \in R\}. \end{IEEEeqnarray*} This is closed as an intersection of clopen sets. \item We apply \yaref{thm:borel} (iv). Let $\cF \subseteq LO(\N) \times \cN$ be such that the $\cN$-coordinate encodes a strictly decreasing sequence, i.e.~ \[(R, s) \in \cF :\iff \forall n \in \N.~(s(n+1), s(n)) \in R.\] We have that \[ \cF = \bigcap_{n \in \N} \{(R,s) \in LO(\N)\times \cN : (s(n+1), s(n)) \in R\} \] is closed as an intersection of clopen sets. Clearly $\pr_{LO(\N)}(\cF)$ is the complement of $WO(\N)$, hence $WO(\N)$ is coanalytic. \end{itemize} \nr 4 \begin{remark} In the lecture we only look at metrizable flows, so the definitions from the exercise sheet and from the lecture don't agree. \end{remark} \begin{itemize} \item Consider \begin{IEEEeqnarray*}{rCl} \Phi\colon \Z\text{-flows on } X &\longrightarrow & \Homeo(X) \\ (\alpha\colon \Z\times X \to X) &\longmapsto & \alpha(1, \cdot)\\ \begin{pmatrix*}[l] \Z\times X &\longrightarrow & X \\ (z,x) &\longmapsto & \beta^{z}(x) \end{pmatrix*}&\longmapsfrom & \beta \in \Homeo(X). \end{IEEEeqnarray*} Clearly this has the desired properties. \item We have \begin{IEEEeqnarray*}{Cl} & \Z \circlearrowright X \text{ has a dense orbit}\\ \iff& \exists x \in X.~ \overline{\Z\cdot x} = X\\ \iff& \exists x \in X.~\forall U\overset{\text{open}}{\subseteq} X.~\exists z \in \Z.~ z \cdot x \in U\\ \iff&\exists x \in X.~\forall U \overset{\text{open}}{\subseteq} X.~ \exists z \in \Z.~f^z(x) \in U. \end{IEEEeqnarray*} \item \todo{TODO} \item It suffices to check the condition from part (b) for open sets $U$ of a countable basis and points $x \in X$ belonging to a countable dense subset. Replacing quantifiers by unions resp.~intersections gives that $D$ is Borel. \end{itemize}